Filename | /usr/share/perl/5.10/Math/BigInt/Calc.pm |
Statements | Executed 322 statements in 11.8ms |
Calls | P | F | Exclusive Time |
Inclusive Time |
Subroutine |
---|---|---|---|---|---|
1 | 1 | 1 | 323µs | 480µs | BEGIN@117 | Math::BigInt::Calc::
10 | 2 | 1 | 74µs | 74µs | CORE:regcomp (opcode) | Math::BigInt::Calc::
2 | 2 | 2 | 51µs | 51µs | _base_len | Math::BigInt::Calc::
1 | 1 | 1 | 38µs | 41µs | BEGIN@2115 | Math::BigInt::Calc::
3 | 3 | 1 | 28µs | 28µs | _new | Math::BigInt::Calc::
1 | 1 | 1 | 27µs | 122µs | BEGIN@1874 | Math::BigInt::Calc::
1 | 1 | 1 | 25µs | 25µs | BEGIN@3 | Math::BigInt::Calc::
1 | 1 | 1 | 24µs | 30µs | BEGIN@787 | Math::BigInt::Calc::
1 | 1 | 1 | 22µs | 26µs | BEGIN@137 | Math::BigInt::Calc::
1 | 1 | 1 | 20µs | 23µs | BEGIN@470 | Math::BigInt::Calc::
1 | 1 | 1 | 17µs | 22µs | BEGIN@2080 | Math::BigInt::Calc::
1 | 1 | 1 | 15µs | 15µs | _str | Math::BigInt::Calc::
1 | 1 | 1 | 12µs | 15µs | BEGIN@2151 | Math::BigInt::Calc::
1 | 1 | 1 | 11µs | 14µs | BEGIN@154 | Math::BigInt::Calc::
1 | 1 | 1 | 11µs | 14µs | BEGIN@165 | Math::BigInt::Calc::
12 | 4 | 1 | 11µs | 11µs | CORE:match (opcode) | Math::BigInt::Calc::
1 | 1 | 1 | 9µs | 13µs | BEGIN@4 | Math::BigInt::Calc::
1 | 1 | 1 | 2µs | 2µs | import | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _1ex | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | __strip_zeros | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _acmp | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _add | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _and | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _as_bin | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _as_hex | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _as_oct | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _check | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _copy | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _dec | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _digit | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _div_use_div | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _div_use_div_64 | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _div_use_mul | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _fac | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _from_bin | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _from_hex | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _from_oct | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _gcd | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _inc | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_even | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_odd | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_one | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_ten | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_two | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_zero | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _len | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _log_int | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _lsft | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _mod | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _modinv | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _modpow | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _mul_use_div | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _mul_use_div_64 | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _mul_use_mul | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _nok | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _num | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _one | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _or | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _pow | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _root | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _rsft | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _sqrt | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _sub | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _ten | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _two | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _xor | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _zero | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _zeros | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | steps | Math::BigInt::Calc::
Line | State ments |
Time on line |
Calls | Time in subs |
Code |
---|---|---|---|---|---|
1 | package Math::BigInt::Calc; | ||||
2 | |||||
3 | 3 | 42µs | 1 | 25µs | # spent 25µs within Math::BigInt::Calc::BEGIN@3 which was called:
# once (25µs+0s) by Math::BigInt::FastCalc::BEGIN@8 at line 3 # spent 25µs making 1 call to Math::BigInt::Calc::BEGIN@3 |
4 | 3 | 575µs | 2 | 16µs | # spent 13µs (9+4) within Math::BigInt::Calc::BEGIN@4 which was called:
# once (9µs+4µs) by Math::BigInt::FastCalc::BEGIN@8 at line 4 # spent 13µs making 1 call to Math::BigInt::Calc::BEGIN@4
# spent 4µs making 1 call to strict::import |
5 | # use warnings; # dont use warnings for older Perls | ||||
6 | |||||
7 | 1 | 1µs | our $VERSION = '0.52'; | ||
8 | |||||
9 | # Package to store unsigned big integers in decimal and do math with them | ||||
10 | |||||
11 | # Internally the numbers are stored in an array with at least 1 element, no | ||||
12 | # leading zero parts (except the first) and in base 1eX where X is determined | ||||
13 | # automatically at loading time to be the maximum possible value | ||||
14 | |||||
15 | # todo: | ||||
16 | # - fully remove funky $# stuff in div() (maybe - that code scares me...) | ||||
17 | |||||
18 | # USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used | ||||
19 | # instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms | ||||
20 | # BS2000, some Crays need USE_DIV instead. | ||||
21 | # The BEGIN block is used to determine which of the two variants gives the | ||||
22 | # correct result. | ||||
23 | |||||
24 | # Beware of things like: | ||||
25 | # $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE; | ||||
26 | # This works on x86, but fails on ARM (SA1100, iPAQ) due to whoknows what | ||||
27 | # reasons. So, use this instead (slower, but correct): | ||||
28 | # $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car; | ||||
29 | |||||
30 | ############################################################################## | ||||
31 | # global constants, flags and accessory | ||||
32 | |||||
33 | # announce that we are compatible with MBI v1.83 and up | ||||
34 | sub api_version () { 2; } | ||||
35 | |||||
36 | # constants for easier life | ||||
37 | 1 | 600ns | my ($BASE,$BASE_LEN,$RBASE,$MAX_VAL); | ||
38 | 1 | 200ns | my ($AND_BITS,$XOR_BITS,$OR_BITS); | ||
39 | 1 | 200ns | my ($AND_MASK,$XOR_MASK,$OR_MASK); | ||
40 | |||||
41 | sub _base_len | ||||
42 | # spent 51µs within Math::BigInt::Calc::_base_len which was called 2 times, avg 26µs/call:
# once (44µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 152
# once (7µs+0s) by Math::BigInt::FastCalc::BEGIN@25 at line 48 of Math/BigInt/FastCalc.pm | ||||
43 | # Set/get the BASE_LEN and assorted other, connected values. | ||||
44 | # Used only by the testsuite, the set variant is used only by the BEGIN | ||||
45 | # block below: | ||||
46 | 8 | 14µs | shift; | ||
47 | |||||
48 | my ($b, $int) = @_; | ||||
49 | 3 | 23µs | if (defined $b) | ||
50 | { | ||||
51 | # avoid redefinitions | ||||
52 | undef &_mul; | ||||
53 | undef &_div; | ||||
54 | |||||
55 | 6 | 21µs | if ($] >= 5.008 && $int && $b > 7) | ||
56 | { | ||||
57 | $BASE_LEN = $b; | ||||
58 | *_mul = \&_mul_use_div_64; | ||||
59 | *_div = \&_div_use_div_64; | ||||
60 | $BASE = int("1e".$BASE_LEN); | ||||
61 | $MAX_VAL = $BASE-1; | ||||
62 | return $BASE_LEN unless wantarray; | ||||
63 | return ($BASE_LEN, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL, $BASE); | ||||
64 | } | ||||
65 | |||||
66 | # find whether we can use mul or div in mul()/div() | ||||
67 | $BASE_LEN = $b+1; | ||||
68 | my $caught = 0; | ||||
69 | while (--$BASE_LEN > 5) | ||||
70 | { | ||||
71 | $BASE = int("1e".$BASE_LEN); | ||||
72 | $RBASE = abs('1e-'.$BASE_LEN); # see USE_MUL | ||||
73 | $caught = 0; | ||||
74 | $caught += 1 if (int($BASE * $RBASE) != 1); # should be 1 | ||||
75 | $caught += 2 if (int($BASE / $BASE) != 1); # should be 1 | ||||
76 | last if $caught != 3; | ||||
77 | } | ||||
78 | $BASE = int("1e".$BASE_LEN); | ||||
79 | $RBASE = abs('1e-'.$BASE_LEN); # see USE_MUL | ||||
80 | $MAX_VAL = $BASE-1; | ||||
81 | |||||
82 | # ($caught & 1) != 0 => cannot use MUL | ||||
83 | # ($caught & 2) != 0 => cannot use DIV | ||||
84 | if ($caught == 2) # 2 | ||||
85 | { | ||||
86 | # must USE_MUL since we cannot use DIV | ||||
87 | *_mul = \&_mul_use_mul; | ||||
88 | *_div = \&_div_use_mul; | ||||
89 | } | ||||
90 | else # 0 or 1 | ||||
91 | { | ||||
92 | # can USE_DIV instead | ||||
93 | *_mul = \&_mul_use_div; | ||||
94 | *_div = \&_div_use_div; | ||||
95 | } | ||||
96 | } | ||||
97 | return $BASE_LEN unless wantarray; | ||||
98 | return ($BASE_LEN, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL, $BASE); | ||||
99 | } | ||||
100 | |||||
101 | sub _new | ||||
102 | { | ||||
103 | # (ref to string) return ref to num_array | ||||
104 | # Convert a number from string format (without sign) to internal base | ||||
105 | # 1ex format. Assumes normalized value as input. | ||||
106 | 6 | 45µs | my $il = length($_[1])-1; | ||
107 | |||||
108 | # < BASE_LEN due len-1 above | ||||
109 | return [ int($_[1]) ] if $il < $BASE_LEN; # shortcut for short numbers | ||||
110 | |||||
111 | # this leaves '00000' instead of int 0 and will be corrected after any op | ||||
112 | [ reverse(unpack("a" . ($il % $BASE_LEN+1) | ||||
113 | . ("a$BASE_LEN" x ($il / $BASE_LEN)), $_[1])) ]; | ||||
114 | } | ||||
115 | |||||
116 | BEGIN | ||||
117 | # spent 480µs (323+156) within Math::BigInt::Calc::BEGIN@117 which was called:
# once (323µs+156µs) by Math::BigInt::FastCalc::BEGIN@8 at line 194 | ||||
118 | # from Daniel Pfeiffer: determine largest group of digits that is precisely | ||||
119 | # multipliable with itself plus carry | ||||
120 | # Test now changed to expect the proper pattern, not a result off by 1 or 2 | ||||
121 | 26 | 69µs | my ($e, $num) = 3; # lowest value we will use is 3+1-1 = 3 | ||
122 | do | ||||
123 | 14 | 100µs | 14 | 45µs | { # spent 41µs making 7 calls to Math::BigInt::Calc::CORE:regcomp, avg 6µs/call
# spent 4µs making 7 calls to Math::BigInt::Calc::CORE:match, avg 600ns/call |
124 | $num = ('9' x ++$e) + 0; | ||||
125 | $num *= $num + 1.0; | ||||
126 | } while ("$num" =~ /9{$e}0{$e}/); # must be a certain pattern | ||||
127 | $e--; # last test failed, so retract one step | ||||
128 | # the limits below brush the problems with the test above under the rug: | ||||
129 | # the test should be able to find the proper $e automatically | ||||
130 | 1 | 2µs | $e = 5 if $^O =~ /^uts/; # UTS get's some special treatment # spent 2µs making 1 call to Math::BigInt::Calc::CORE:match | ||
131 | 1 | 900ns | $e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work # spent 900ns making 1 call to Math::BigInt::Calc::CORE:match | ||
132 | # there, but we play safe) | ||||
133 | |||||
134 | my $int = 0; | ||||
135 | 5 | 4µs | if ($e > 7) | ||
136 | { | ||||
137 | 3 | 97µs | 2 | 31µs | # spent 26µs (22+4) within Math::BigInt::Calc::BEGIN@137 which was called:
# once (22µs+4µs) by Math::BigInt::FastCalc::BEGIN@8 at line 137 # spent 26µs making 1 call to Math::BigInt::Calc::BEGIN@137
# spent 4µs making 1 call to integer::import |
138 | my $e1 = 7; | ||||
139 | $num = 7; | ||||
140 | do | ||||
141 | 6 | 81µs | 6 | 36µs | { # spent 33µs making 3 calls to Math::BigInt::Calc::CORE:regcomp, avg 11µs/call
# spent 3µs making 3 calls to Math::BigInt::Calc::CORE:match, avg 1µs/call |
142 | $num = ('9' x ++$e1) + 0; | ||||
143 | $num *= $num + 1; | ||||
144 | } while ("$num" =~ /9{$e1}0{$e1}/); # must be a certain pattern | ||||
145 | $e1--; # last test failed, so retract one step | ||||
146 | 2 | 1µs | if ($e1 > 7) | ||
147 | { | ||||
148 | $int = 1; $e = $e1; | ||||
149 | } | ||||
150 | } | ||||
151 | |||||
152 | 1 | 44µs | __PACKAGE__->_base_len($e,$int); # set and store # spent 44µs making 1 call to Math::BigInt::Calc::_base_len | ||
153 | |||||
154 | 3 | 66µs | 2 | 16µs | # spent 14µs (11+3) within Math::BigInt::Calc::BEGIN@154 which was called:
# once (11µs+3µs) by Math::BigInt::FastCalc::BEGIN@8 at line 154 # spent 14µs making 1 call to Math::BigInt::Calc::BEGIN@154
# spent 3µs making 1 call to integer::import |
155 | # find out how many bits _and, _or and _xor can take (old default = 16) | ||||
156 | # I don't think anybody has yet 128 bit scalars, so let's play safe. | ||||
157 | local $^W = 0; # don't warn about 'nonportable number' | ||||
158 | $AND_BITS = 15; $XOR_BITS = 15; $OR_BITS = 15; | ||||
159 | |||||
160 | # find max bits, we will not go higher than numberofbits that fit into $BASE | ||||
161 | # to make _and etc simpler (and faster for smaller, slower for large numbers) | ||||
162 | my $max = 16; | ||||
163 | 14 | 7µs | while (2 ** $max < $BASE) { $max++; } | ||
164 | { | ||||
165 | 3 | 183µs | 2 | 18µs | # spent 14µs (11+4) within Math::BigInt::Calc::BEGIN@165 which was called:
# once (11µs+4µs) by Math::BigInt::FastCalc::BEGIN@8 at line 165 # spent 14µs making 1 call to Math::BigInt::Calc::BEGIN@165
# spent 4µs making 1 call to integer::unimport |
166 | 1 | 500ns | $max = 16 if $] < 5.006; # older Perls might not take >16 too well | ||
167 | } | ||||
168 | my ($x,$y,$z); | ||||
169 | 60 | 34µs | do { | ||
170 | $AND_BITS++; | ||||
171 | $x = CORE::oct('0b' . '1' x $AND_BITS); $y = $x & $x; | ||||
172 | $z = (2 ** $AND_BITS) - 1; | ||||
173 | } while ($AND_BITS < $max && $x == $z && $y == $x); | ||||
174 | $AND_BITS --; # retreat one step | ||||
175 | 60 | 43µs | do { | ||
176 | $XOR_BITS++; | ||||
177 | $x = CORE::oct('0b' . '1' x $XOR_BITS); $y = $x ^ 0; | ||||
178 | $z = (2 ** $XOR_BITS) - 1; | ||||
179 | } while ($XOR_BITS < $max && $x == $z && $y == $x); | ||||
180 | $XOR_BITS --; # retreat one step | ||||
181 | 60 | 46µs | do { | ||
182 | $OR_BITS++; | ||||
183 | $x = CORE::oct('0b' . '1' x $OR_BITS); $y = $x | $x; | ||||
184 | $z = (2 ** $OR_BITS) - 1; | ||||
185 | } while ($OR_BITS < $max && $x == $z && $y == $x); | ||||
186 | $OR_BITS --; # retreat one step | ||||
187 | |||||
188 | 1 | 10µs | $AND_MASK = __PACKAGE__->_new( ( 2 ** $AND_BITS )); # spent 10µs making 1 call to Math::BigInt::Calc::_new | ||
189 | 1 | 11µs | $XOR_MASK = __PACKAGE__->_new( ( 2 ** $XOR_BITS )); # spent 11µs making 1 call to Math::BigInt::Calc::_new | ||
190 | 1 | 7µs | $OR_MASK = __PACKAGE__->_new( ( 2 ** $OR_BITS )); # spent 7µs making 1 call to Math::BigInt::Calc::_new | ||
191 | |||||
192 | # We can compute the approximate lenght no faster than the real length: | ||||
193 | *_alen = \&_len; | ||||
194 | 1 | 1.04ms | 1 | 480µs | } # spent 480µs making 1 call to Math::BigInt::Calc::BEGIN@117 |
195 | |||||
196 | ############################################################################### | ||||
197 | |||||
198 | sub _zero | ||||
199 | { | ||||
200 | # create a zero | ||||
201 | [ 0 ]; | ||||
202 | } | ||||
203 | |||||
204 | sub _one | ||||
205 | { | ||||
206 | # create a one | ||||
207 | [ 1 ]; | ||||
208 | } | ||||
209 | |||||
210 | sub _two | ||||
211 | { | ||||
212 | # create a two (used internally for shifting) | ||||
213 | [ 2 ]; | ||||
214 | } | ||||
215 | |||||
216 | sub _ten | ||||
217 | { | ||||
218 | # create a 10 (used internally for shifting) | ||||
219 | [ 10 ]; | ||||
220 | } | ||||
221 | |||||
222 | sub _1ex | ||||
223 | { | ||||
224 | # create a 1Ex | ||||
225 | my $rem = $_[1] % $BASE_LEN; # remainder | ||||
226 | my $parts = $_[1] / $BASE_LEN; # parts | ||||
227 | |||||
228 | # 000000, 000000, 100 | ||||
229 | [ (0) x $parts, '1' . ('0' x $rem) ]; | ||||
230 | } | ||||
231 | |||||
232 | sub _copy | ||||
233 | { | ||||
234 | # make a true copy | ||||
235 | [ @{$_[1]} ]; | ||||
236 | } | ||||
237 | |||||
238 | # catch and throw away | ||||
239 | 1 | 7µs | # spent 2µs within Math::BigInt::Calc::import which was called:
# once (2µs+0s) by Math::BigInt::FastCalc::BEGIN@8 at line 8 of Math/BigInt/FastCalc.pm | ||
240 | |||||
241 | ############################################################################## | ||||
242 | # convert back to string and number | ||||
243 | |||||
244 | sub _str | ||||
245 | # spent 15µs within Math::BigInt::Calc::_str which was called:
# once (15µs+0s) by Math::BigInt::bstr at line 833 of Math/BigInt.pm | ||||
246 | # (ref to BINT) return num_str | ||||
247 | # Convert number from internal base 100000 format to string format. | ||||
248 | # internal format is always normalized (no leading zeros, "-0" => "+0") | ||||
249 | 10 | 17µs | my $ar = $_[1]; | ||
250 | |||||
251 | my $l = scalar @$ar; # number of parts | ||||
252 | if ($l < 1) # should not happen | ||||
253 | { | ||||
254 | require Carp; | ||||
255 | Carp::croak("$_[1] has no elements"); | ||||
256 | } | ||||
257 | |||||
258 | my $ret = ""; | ||||
259 | # handle first one different to strip leading zeros from it (there are no | ||||
260 | # leading zero parts in internal representation) | ||||
261 | $l --; $ret .= int($ar->[$l]); $l--; | ||||
262 | # Interestingly, the pre-padd method uses more time | ||||
263 | # the old grep variant takes longer (14 vs. 10 sec) | ||||
264 | my $z = '0' x ($BASE_LEN-1); | ||||
265 | while ($l >= 0) | ||||
266 | { | ||||
267 | $ret .= substr($z.$ar->[$l],-$BASE_LEN); # fastest way I could think of | ||||
268 | $l--; | ||||
269 | } | ||||
270 | $ret; | ||||
271 | } | ||||
272 | |||||
273 | sub _num | ||||
274 | { | ||||
275 | # Make a number (scalar int/float) from a BigInt object | ||||
276 | my $x = $_[1]; | ||||
277 | |||||
278 | return 0+$x->[0] if scalar @$x == 1; # below $BASE | ||||
279 | my $fac = 1; | ||||
280 | my $num = 0; | ||||
281 | foreach (@$x) | ||||
282 | { | ||||
283 | $num += $fac*$_; $fac *= $BASE; | ||||
284 | } | ||||
285 | $num; | ||||
286 | } | ||||
287 | |||||
288 | ############################################################################## | ||||
289 | # actual math code | ||||
290 | |||||
291 | sub _add | ||||
292 | { | ||||
293 | # (ref to int_num_array, ref to int_num_array) | ||||
294 | # routine to add two base 1eX numbers | ||||
295 | # stolen from Knuth Vol 2 Algorithm A pg 231 | ||||
296 | # there are separate routines to add and sub as per Knuth pg 233 | ||||
297 | # This routine clobbers up array x, but not y. | ||||
298 | |||||
299 | my ($c,$x,$y) = @_; | ||||
300 | |||||
301 | return $x if (@$y == 1) && $y->[0] == 0; # $x + 0 => $x | ||||
302 | if ((@$x == 1) && $x->[0] == 0) # 0 + $y => $y->copy | ||||
303 | { | ||||
304 | # twice as slow as $x = [ @$y ], but nec. to retain $x as ref :( | ||||
305 | @$x = @$y; return $x; | ||||
306 | } | ||||
307 | |||||
308 | # for each in Y, add Y to X and carry. If after that, something is left in | ||||
309 | # X, foreach in X add carry to X and then return X, carry | ||||
310 | # Trades one "$j++" for having to shift arrays | ||||
311 | my $i; my $car = 0; my $j = 0; | ||||
312 | for $i (@$y) | ||||
313 | { | ||||
314 | $x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0; | ||||
315 | $j++; | ||||
316 | } | ||||
317 | while ($car != 0) | ||||
318 | { | ||||
319 | $x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0; $j++; | ||||
320 | } | ||||
321 | $x; | ||||
322 | } | ||||
323 | |||||
324 | sub _inc | ||||
325 | { | ||||
326 | # (ref to int_num_array, ref to int_num_array) | ||||
327 | # Add 1 to $x, modify $x in place | ||||
328 | my ($c,$x) = @_; | ||||
329 | |||||
330 | for my $i (@$x) | ||||
331 | { | ||||
332 | return $x if (($i += 1) < $BASE); # early out | ||||
333 | $i = 0; # overflow, next | ||||
334 | } | ||||
335 | push @$x,1 if (($x->[-1] || 0) == 0); # last overflowed, so extend | ||||
336 | $x; | ||||
337 | } | ||||
338 | |||||
339 | sub _dec | ||||
340 | { | ||||
341 | # (ref to int_num_array, ref to int_num_array) | ||||
342 | # Sub 1 from $x, modify $x in place | ||||
343 | my ($c,$x) = @_; | ||||
344 | |||||
345 | my $MAX = $BASE-1; # since MAX_VAL based on BASE | ||||
346 | for my $i (@$x) | ||||
347 | { | ||||
348 | last if (($i -= 1) >= 0); # early out | ||||
349 | $i = $MAX; # underflow, next | ||||
350 | } | ||||
351 | pop @$x if $x->[-1] == 0 && @$x > 1; # last underflowed (but leave 0) | ||||
352 | $x; | ||||
353 | } | ||||
354 | |||||
355 | sub _sub | ||||
356 | { | ||||
357 | # (ref to int_num_array, ref to int_num_array, swap) | ||||
358 | # subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y | ||||
359 | # subtract Y from X by modifying x in place | ||||
360 | my ($c,$sx,$sy,$s) = @_; | ||||
361 | |||||
362 | my $car = 0; my $i; my $j = 0; | ||||
363 | if (!$s) | ||||
364 | { | ||||
365 | for $i (@$sx) | ||||
366 | { | ||||
367 | last unless defined $sy->[$j] || $car; | ||||
368 | $i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0); $j++; | ||||
369 | } | ||||
370 | # might leave leading zeros, so fix that | ||||
371 | return __strip_zeros($sx); | ||||
372 | } | ||||
373 | for $i (@$sx) | ||||
374 | { | ||||
375 | # we can't do an early out if $x is < than $y, since we | ||||
376 | # need to copy the high chunks from $y. Found by Bob Mathews. | ||||
377 | #last unless defined $sy->[$j] || $car; | ||||
378 | $sy->[$j] += $BASE | ||||
379 | if $car = (($sy->[$j] = $i-($sy->[$j]||0) - $car) < 0); | ||||
380 | $j++; | ||||
381 | } | ||||
382 | # might leave leading zeros, so fix that | ||||
383 | __strip_zeros($sy); | ||||
384 | } | ||||
385 | |||||
386 | sub _mul_use_mul | ||||
387 | { | ||||
388 | # (ref to int_num_array, ref to int_num_array) | ||||
389 | # multiply two numbers in internal representation | ||||
390 | # modifies first arg, second need not be different from first | ||||
391 | my ($c,$xv,$yv) = @_; | ||||
392 | |||||
393 | if (@$yv == 1) | ||||
394 | { | ||||
395 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
396 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
397 | if (@$xv == 1) | ||||
398 | { | ||||
399 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
400 | { | ||||
401 | $xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $BASE; | ||||
402 | }; | ||||
403 | return $xv; | ||||
404 | } | ||||
405 | # $x * 0 => 0 | ||||
406 | if ($yv->[0] == 0) | ||||
407 | { | ||||
408 | @$xv = (0); | ||||
409 | return $xv; | ||||
410 | } | ||||
411 | # multiply a large number a by a single element one, so speed up | ||||
412 | my $y = $yv->[0]; my $car = 0; | ||||
413 | foreach my $i (@$xv) | ||||
414 | { | ||||
415 | $i = $i * $y + $car; $car = int($i * $RBASE); $i -= $car * $BASE; | ||||
416 | } | ||||
417 | push @$xv, $car if $car != 0; | ||||
418 | return $xv; | ||||
419 | } | ||||
420 | # shortcut for result $x == 0 => result = 0 | ||||
421 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
422 | |||||
423 | # since multiplying $x with $x fails, make copy in this case | ||||
424 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
425 | |||||
426 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
427 | |||||
428 | for $xi (@$xv) | ||||
429 | { | ||||
430 | $car = 0; $cty = 0; | ||||
431 | |||||
432 | # slow variant | ||||
433 | # for $yi (@$yv) | ||||
434 | # { | ||||
435 | # $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
436 | # $prod[$cty++] = | ||||
437 | # $prod - ($car = int($prod * RBASE)) * $BASE; # see USE_MUL | ||||
438 | # } | ||||
439 | # $prod[$cty] += $car if $car; # need really to check for 0? | ||||
440 | # $xi = shift @prod; | ||||
441 | |||||
442 | # faster variant | ||||
443 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
444 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
445 | for $yi (@$yv) | ||||
446 | { | ||||
447 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
448 | ## this is actually a tad slower | ||||
449 | ## $prod = $prod[$cty]; $prod += ($car + $xi * $yi); # no ||0 here | ||||
450 | $prod[$cty++] = | ||||
451 | $prod - ($car = int($prod * $RBASE)) * $BASE; # see USE_MUL | ||||
452 | } | ||||
453 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
454 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
455 | } | ||||
456 | push @$xv, @prod; | ||||
457 | # can't have leading zeros | ||||
458 | # __strip_zeros($xv); | ||||
459 | $xv; | ||||
460 | } | ||||
461 | |||||
462 | sub _mul_use_div_64 | ||||
463 | { | ||||
464 | # (ref to int_num_array, ref to int_num_array) | ||||
465 | # multiply two numbers in internal representation | ||||
466 | # modifies first arg, second need not be different from first | ||||
467 | # works for 64 bit integer with "use integer" | ||||
468 | my ($c,$xv,$yv) = @_; | ||||
469 | |||||
470 | 3 | 1.41ms | 2 | 27µs | # spent 23µs (20+3) within Math::BigInt::Calc::BEGIN@470 which was called:
# once (20µs+3µs) by Math::BigInt::FastCalc::BEGIN@8 at line 470 # spent 23µs making 1 call to Math::BigInt::Calc::BEGIN@470
# spent 3µs making 1 call to integer::import |
471 | if (@$yv == 1) | ||||
472 | { | ||||
473 | # shortcut for two small numbers, also handles $x == 0 | ||||
474 | if (@$xv == 1) | ||||
475 | { | ||||
476 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
477 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
478 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
479 | { | ||||
480 | $xv->[0] = | ||||
481 | $xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE; | ||||
482 | }; | ||||
483 | return $xv; | ||||
484 | } | ||||
485 | # $x * 0 => 0 | ||||
486 | if ($yv->[0] == 0) | ||||
487 | { | ||||
488 | @$xv = (0); | ||||
489 | return $xv; | ||||
490 | } | ||||
491 | # multiply a large number a by a single element one, so speed up | ||||
492 | my $y = $yv->[0]; my $car = 0; | ||||
493 | foreach my $i (@$xv) | ||||
494 | { | ||||
495 | #$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE; | ||||
496 | $i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE; | ||||
497 | } | ||||
498 | push @$xv, $car if $car != 0; | ||||
499 | return $xv; | ||||
500 | } | ||||
501 | # shortcut for result $x == 0 => result = 0 | ||||
502 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
503 | |||||
504 | # since multiplying $x with $x fails, make copy in this case | ||||
505 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
506 | |||||
507 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
508 | for $xi (@$xv) | ||||
509 | { | ||||
510 | $car = 0; $cty = 0; | ||||
511 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
512 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
513 | for $yi (@$yv) | ||||
514 | { | ||||
515 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
516 | $prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE; | ||||
517 | } | ||||
518 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
519 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
520 | } | ||||
521 | push @$xv, @prod; | ||||
522 | $xv; | ||||
523 | } | ||||
524 | |||||
525 | sub _mul_use_div | ||||
526 | { | ||||
527 | # (ref to int_num_array, ref to int_num_array) | ||||
528 | # multiply two numbers in internal representation | ||||
529 | # modifies first arg, second need not be different from first | ||||
530 | my ($c,$xv,$yv) = @_; | ||||
531 | |||||
532 | if (@$yv == 1) | ||||
533 | { | ||||
534 | # shortcut for two small numbers, also handles $x == 0 | ||||
535 | if (@$xv == 1) | ||||
536 | { | ||||
537 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
538 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
539 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
540 | { | ||||
541 | $xv->[0] = | ||||
542 | $xv->[0] - ($xv->[1] = int($xv->[0] / $BASE)) * $BASE; | ||||
543 | }; | ||||
544 | return $xv; | ||||
545 | } | ||||
546 | # $x * 0 => 0 | ||||
547 | if ($yv->[0] == 0) | ||||
548 | { | ||||
549 | @$xv = (0); | ||||
550 | return $xv; | ||||
551 | } | ||||
552 | # multiply a large number a by a single element one, so speed up | ||||
553 | my $y = $yv->[0]; my $car = 0; | ||||
554 | foreach my $i (@$xv) | ||||
555 | { | ||||
556 | $i = $i * $y + $car; $car = int($i / $BASE); $i -= $car * $BASE; | ||||
557 | # This (together with use integer;) does not work on 32-bit Perls | ||||
558 | #$i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE; | ||||
559 | } | ||||
560 | push @$xv, $car if $car != 0; | ||||
561 | return $xv; | ||||
562 | } | ||||
563 | # shortcut for result $x == 0 => result = 0 | ||||
564 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
565 | |||||
566 | # since multiplying $x with $x fails, make copy in this case | ||||
567 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
568 | |||||
569 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
570 | for $xi (@$xv) | ||||
571 | { | ||||
572 | $car = 0; $cty = 0; | ||||
573 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
574 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
575 | for $yi (@$yv) | ||||
576 | { | ||||
577 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
578 | $prod[$cty++] = $prod - ($car = int($prod / $BASE)) * $BASE; | ||||
579 | } | ||||
580 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
581 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
582 | } | ||||
583 | push @$xv, @prod; | ||||
584 | # can't have leading zeros | ||||
585 | # __strip_zeros($xv); | ||||
586 | $xv; | ||||
587 | } | ||||
588 | |||||
589 | sub _div_use_mul | ||||
590 | { | ||||
591 | # ref to array, ref to array, modify first array and return remainder if | ||||
592 | # in list context | ||||
593 | |||||
594 | # see comments in _div_use_div() for more explanations | ||||
595 | |||||
596 | my ($c,$x,$yorg) = @_; | ||||
597 | |||||
598 | # the general div algorithmn here is about O(N*N) and thus quite slow, so | ||||
599 | # we first check for some special cases and use shortcuts to handle them. | ||||
600 | |||||
601 | # This works, because we store the numbers in a chunked format where each | ||||
602 | # element contains 5..7 digits (depending on system). | ||||
603 | |||||
604 | # if both numbers have only one element: | ||||
605 | if (@$x == 1 && @$yorg == 1) | ||||
606 | { | ||||
607 | # shortcut, $yorg and $x are two small numbers | ||||
608 | if (wantarray) | ||||
609 | { | ||||
610 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
611 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
612 | return ($x,$r); | ||||
613 | } | ||||
614 | else | ||||
615 | { | ||||
616 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
617 | return $x; | ||||
618 | } | ||||
619 | } | ||||
620 | |||||
621 | # if x has more than one, but y has only one element: | ||||
622 | if (@$yorg == 1) | ||||
623 | { | ||||
624 | my $rem; | ||||
625 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
626 | |||||
627 | # shortcut, $y is < $BASE | ||||
628 | my $j = scalar @$x; my $r = 0; | ||||
629 | my $y = $yorg->[0]; my $b; | ||||
630 | while ($j-- > 0) | ||||
631 | { | ||||
632 | $b = $r * $BASE + $x->[$j]; | ||||
633 | $x->[$j] = int($b/$y); | ||||
634 | $r = $b % $y; | ||||
635 | } | ||||
636 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
637 | return ($x,$rem) if wantarray; | ||||
638 | return $x; | ||||
639 | } | ||||
640 | |||||
641 | # now x and y have more than one element | ||||
642 | |||||
643 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
644 | if (@$yorg > @$x) | ||||
645 | { | ||||
646 | my $rem; | ||||
647 | $rem = [@$x] if wantarray; # make copy | ||||
648 | splice (@$x,1); # keep ref to original array | ||||
649 | $x->[0] = 0; # set to 0 | ||||
650 | return ($x,$rem) if wantarray; # including remainder? | ||||
651 | return $x; # only x, which is [0] now | ||||
652 | } | ||||
653 | # check whether the numbers have the same number of elements, in that case | ||||
654 | # the result will fit into one element and can be computed efficiently | ||||
655 | if (@$yorg == @$x) | ||||
656 | { | ||||
657 | my $rem; | ||||
658 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
659 | # the one from $x), the result will also be 0: | ||||
660 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
661 | { | ||||
662 | $rem = [@$x] if wantarray; # make copy | ||||
663 | splice (@$x,1); # keep ref to org array | ||||
664 | $x->[0] = 0; # set to 0 | ||||
665 | return ($x,$rem) if wantarray; # including remainder? | ||||
666 | return $x; | ||||
667 | } | ||||
668 | # now calculate $x / $yorg | ||||
669 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
670 | { | ||||
671 | # same length, so make full compare | ||||
672 | |||||
673 | my $a = 0; my $j = scalar @$x - 1; | ||||
674 | # manual way (abort if unequal, good for early ne) | ||||
675 | while ($j >= 0) | ||||
676 | { | ||||
677 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
678 | } | ||||
679 | # $a contains the result of the compare between X and Y | ||||
680 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
681 | if ($a <= 0) | ||||
682 | { | ||||
683 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
684 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
685 | splice(@$x,1); # keep single element | ||||
686 | $x->[0] = 0; # if $a < 0 | ||||
687 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
688 | return ($x,$rem) if wantarray; | ||||
689 | return $x; | ||||
690 | } | ||||
691 | # $x >= $y, so proceed normally | ||||
692 | } | ||||
693 | } | ||||
694 | |||||
695 | # all other cases: | ||||
696 | |||||
697 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
698 | |||||
699 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
700 | |||||
701 | $car = $bar = $prd = 0; | ||||
702 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
703 | { | ||||
704 | for $xi (@$x) | ||||
705 | { | ||||
706 | $xi = $xi * $dd + $car; | ||||
707 | $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL | ||||
708 | } | ||||
709 | push(@$x, $car); $car = 0; | ||||
710 | for $yi (@$y) | ||||
711 | { | ||||
712 | $yi = $yi * $dd + $car; | ||||
713 | $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL | ||||
714 | } | ||||
715 | } | ||||
716 | else | ||||
717 | { | ||||
718 | push(@$x, 0); | ||||
719 | } | ||||
720 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
721 | $v2 = 0 unless $v2; | ||||
722 | while ($#$x > $#$y) | ||||
723 | { | ||||
724 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
725 | $u2 = 0 unless $u2; | ||||
726 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
727 | # if $v1 == 0; | ||||
728 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
729 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
730 | if ($q) | ||||
731 | { | ||||
732 | ($car, $bar) = (0,0); | ||||
733 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
734 | { | ||||
735 | $prd = $q * $y->[$yi] + $car; | ||||
736 | $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL | ||||
737 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
738 | } | ||||
739 | if ($x->[-1] < $car + $bar) | ||||
740 | { | ||||
741 | $car = 0; --$q; | ||||
742 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
743 | { | ||||
744 | $x->[$xi] -= $BASE | ||||
745 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
746 | } | ||||
747 | } | ||||
748 | } | ||||
749 | pop(@$x); | ||||
750 | unshift(@q, $q); | ||||
751 | } | ||||
752 | if (wantarray) | ||||
753 | { | ||||
754 | @d = (); | ||||
755 | if ($dd != 1) | ||||
756 | { | ||||
757 | $car = 0; | ||||
758 | for $xi (reverse @$x) | ||||
759 | { | ||||
760 | $prd = $car * $BASE + $xi; | ||||
761 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL | ||||
762 | unshift(@d, $tmp); | ||||
763 | } | ||||
764 | } | ||||
765 | else | ||||
766 | { | ||||
767 | @d = @$x; | ||||
768 | } | ||||
769 | @$x = @q; | ||||
770 | my $d = \@d; | ||||
771 | __strip_zeros($x); | ||||
772 | __strip_zeros($d); | ||||
773 | return ($x,$d); | ||||
774 | } | ||||
775 | @$x = @q; | ||||
776 | __strip_zeros($x); | ||||
777 | $x; | ||||
778 | } | ||||
779 | |||||
780 | sub _div_use_div_64 | ||||
781 | { | ||||
782 | # ref to array, ref to array, modify first array and return remainder if | ||||
783 | # in list context | ||||
784 | # This version works on 64 bit integers | ||||
785 | my ($c,$x,$yorg) = @_; | ||||
786 | |||||
787 | 3 | 5.05ms | 2 | 36µs | # spent 30µs (24+6) within Math::BigInt::Calc::BEGIN@787 which was called:
# once (24µs+6µs) by Math::BigInt::FastCalc::BEGIN@8 at line 787 # spent 30µs making 1 call to Math::BigInt::Calc::BEGIN@787
# spent 6µs making 1 call to integer::import |
788 | # the general div algorithmn here is about O(N*N) and thus quite slow, so | ||||
789 | # we first check for some special cases and use shortcuts to handle them. | ||||
790 | |||||
791 | # This works, because we store the numbers in a chunked format where each | ||||
792 | # element contains 5..7 digits (depending on system). | ||||
793 | |||||
794 | # if both numbers have only one element: | ||||
795 | if (@$x == 1 && @$yorg == 1) | ||||
796 | { | ||||
797 | # shortcut, $yorg and $x are two small numbers | ||||
798 | if (wantarray) | ||||
799 | { | ||||
800 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
801 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
802 | return ($x,$r); | ||||
803 | } | ||||
804 | else | ||||
805 | { | ||||
806 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
807 | return $x; | ||||
808 | } | ||||
809 | } | ||||
810 | # if x has more than one, but y has only one element: | ||||
811 | if (@$yorg == 1) | ||||
812 | { | ||||
813 | my $rem; | ||||
814 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
815 | |||||
816 | # shortcut, $y is < $BASE | ||||
817 | my $j = scalar @$x; my $r = 0; | ||||
818 | my $y = $yorg->[0]; my $b; | ||||
819 | while ($j-- > 0) | ||||
820 | { | ||||
821 | $b = $r * $BASE + $x->[$j]; | ||||
822 | $x->[$j] = int($b/$y); | ||||
823 | $r = $b % $y; | ||||
824 | } | ||||
825 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
826 | return ($x,$rem) if wantarray; | ||||
827 | return $x; | ||||
828 | } | ||||
829 | # now x and y have more than one element | ||||
830 | |||||
831 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
832 | if (@$yorg > @$x) | ||||
833 | { | ||||
834 | my $rem; | ||||
835 | $rem = [@$x] if wantarray; # make copy | ||||
836 | splice (@$x,1); # keep ref to original array | ||||
837 | $x->[0] = 0; # set to 0 | ||||
838 | return ($x,$rem) if wantarray; # including remainder? | ||||
839 | return $x; # only x, which is [0] now | ||||
840 | } | ||||
841 | # check whether the numbers have the same number of elements, in that case | ||||
842 | # the result will fit into one element and can be computed efficiently | ||||
843 | if (@$yorg == @$x) | ||||
844 | { | ||||
845 | my $rem; | ||||
846 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
847 | # the one from $x), the result will also be 0: | ||||
848 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
849 | { | ||||
850 | $rem = [@$x] if wantarray; # make copy | ||||
851 | splice (@$x,1); # keep ref to org array | ||||
852 | $x->[0] = 0; # set to 0 | ||||
853 | return ($x,$rem) if wantarray; # including remainder? | ||||
854 | return $x; | ||||
855 | } | ||||
856 | # now calculate $x / $yorg | ||||
857 | |||||
858 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
859 | { | ||||
860 | # same length, so make full compare | ||||
861 | |||||
862 | my $a = 0; my $j = scalar @$x - 1; | ||||
863 | # manual way (abort if unequal, good for early ne) | ||||
864 | while ($j >= 0) | ||||
865 | { | ||||
866 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
867 | } | ||||
868 | # $a contains the result of the compare between X and Y | ||||
869 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
870 | if ($a <= 0) | ||||
871 | { | ||||
872 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
873 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
874 | splice(@$x,1); # keep single element | ||||
875 | $x->[0] = 0; # if $a < 0 | ||||
876 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
877 | return ($x,$rem) if wantarray; # including remainder? | ||||
878 | return $x; | ||||
879 | } | ||||
880 | # $x >= $y, so proceed normally | ||||
881 | |||||
882 | } | ||||
883 | } | ||||
884 | |||||
885 | # all other cases: | ||||
886 | |||||
887 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
888 | |||||
889 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
890 | |||||
891 | $car = $bar = $prd = 0; | ||||
892 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
893 | { | ||||
894 | for $xi (@$x) | ||||
895 | { | ||||
896 | $xi = $xi * $dd + $car; | ||||
897 | $xi -= ($car = int($xi / $BASE)) * $BASE; | ||||
898 | } | ||||
899 | push(@$x, $car); $car = 0; | ||||
900 | for $yi (@$y) | ||||
901 | { | ||||
902 | $yi = $yi * $dd + $car; | ||||
903 | $yi -= ($car = int($yi / $BASE)) * $BASE; | ||||
904 | } | ||||
905 | } | ||||
906 | else | ||||
907 | { | ||||
908 | push(@$x, 0); | ||||
909 | } | ||||
910 | |||||
911 | # @q will accumulate the final result, $q contains the current computed | ||||
912 | # part of the final result | ||||
913 | |||||
914 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
915 | $v2 = 0 unless $v2; | ||||
916 | while ($#$x > $#$y) | ||||
917 | { | ||||
918 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
919 | $u2 = 0 unless $u2; | ||||
920 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
921 | # if $v1 == 0; | ||||
922 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
923 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
924 | if ($q) | ||||
925 | { | ||||
926 | ($car, $bar) = (0,0); | ||||
927 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
928 | { | ||||
929 | $prd = $q * $y->[$yi] + $car; | ||||
930 | $prd -= ($car = int($prd / $BASE)) * $BASE; | ||||
931 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
932 | } | ||||
933 | if ($x->[-1] < $car + $bar) | ||||
934 | { | ||||
935 | $car = 0; --$q; | ||||
936 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
937 | { | ||||
938 | $x->[$xi] -= $BASE | ||||
939 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
940 | } | ||||
941 | } | ||||
942 | } | ||||
943 | pop(@$x); unshift(@q, $q); | ||||
944 | } | ||||
945 | if (wantarray) | ||||
946 | { | ||||
947 | @d = (); | ||||
948 | if ($dd != 1) | ||||
949 | { | ||||
950 | $car = 0; | ||||
951 | for $xi (reverse @$x) | ||||
952 | { | ||||
953 | $prd = $car * $BASE + $xi; | ||||
954 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; | ||||
955 | unshift(@d, $tmp); | ||||
956 | } | ||||
957 | } | ||||
958 | else | ||||
959 | { | ||||
960 | @d = @$x; | ||||
961 | } | ||||
962 | @$x = @q; | ||||
963 | my $d = \@d; | ||||
964 | __strip_zeros($x); | ||||
965 | __strip_zeros($d); | ||||
966 | return ($x,$d); | ||||
967 | } | ||||
968 | @$x = @q; | ||||
969 | __strip_zeros($x); | ||||
970 | $x; | ||||
971 | } | ||||
972 | |||||
973 | sub _div_use_div | ||||
974 | { | ||||
975 | # ref to array, ref to array, modify first array and return remainder if | ||||
976 | # in list context | ||||
977 | my ($c,$x,$yorg) = @_; | ||||
978 | |||||
979 | # the general div algorithmn here is about O(N*N) and thus quite slow, so | ||||
980 | # we first check for some special cases and use shortcuts to handle them. | ||||
981 | |||||
982 | # This works, because we store the numbers in a chunked format where each | ||||
983 | # element contains 5..7 digits (depending on system). | ||||
984 | |||||
985 | # if both numbers have only one element: | ||||
986 | if (@$x == 1 && @$yorg == 1) | ||||
987 | { | ||||
988 | # shortcut, $yorg and $x are two small numbers | ||||
989 | if (wantarray) | ||||
990 | { | ||||
991 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
992 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
993 | return ($x,$r); | ||||
994 | } | ||||
995 | else | ||||
996 | { | ||||
997 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
998 | return $x; | ||||
999 | } | ||||
1000 | } | ||||
1001 | # if x has more than one, but y has only one element: | ||||
1002 | if (@$yorg == 1) | ||||
1003 | { | ||||
1004 | my $rem; | ||||
1005 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
1006 | |||||
1007 | # shortcut, $y is < $BASE | ||||
1008 | my $j = scalar @$x; my $r = 0; | ||||
1009 | my $y = $yorg->[0]; my $b; | ||||
1010 | while ($j-- > 0) | ||||
1011 | { | ||||
1012 | $b = $r * $BASE + $x->[$j]; | ||||
1013 | $x->[$j] = int($b/$y); | ||||
1014 | $r = $b % $y; | ||||
1015 | } | ||||
1016 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
1017 | return ($x,$rem) if wantarray; | ||||
1018 | return $x; | ||||
1019 | } | ||||
1020 | # now x and y have more than one element | ||||
1021 | |||||
1022 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
1023 | if (@$yorg > @$x) | ||||
1024 | { | ||||
1025 | my $rem; | ||||
1026 | $rem = [@$x] if wantarray; # make copy | ||||
1027 | splice (@$x,1); # keep ref to original array | ||||
1028 | $x->[0] = 0; # set to 0 | ||||
1029 | return ($x,$rem) if wantarray; # including remainder? | ||||
1030 | return $x; # only x, which is [0] now | ||||
1031 | } | ||||
1032 | # check whether the numbers have the same number of elements, in that case | ||||
1033 | # the result will fit into one element and can be computed efficiently | ||||
1034 | if (@$yorg == @$x) | ||||
1035 | { | ||||
1036 | my $rem; | ||||
1037 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
1038 | # the one from $x), the result will also be 0: | ||||
1039 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
1040 | { | ||||
1041 | $rem = [@$x] if wantarray; # make copy | ||||
1042 | splice (@$x,1); # keep ref to org array | ||||
1043 | $x->[0] = 0; # set to 0 | ||||
1044 | return ($x,$rem) if wantarray; # including remainder? | ||||
1045 | return $x; | ||||
1046 | } | ||||
1047 | # now calculate $x / $yorg | ||||
1048 | |||||
1049 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
1050 | { | ||||
1051 | # same length, so make full compare | ||||
1052 | |||||
1053 | my $a = 0; my $j = scalar @$x - 1; | ||||
1054 | # manual way (abort if unequal, good for early ne) | ||||
1055 | while ($j >= 0) | ||||
1056 | { | ||||
1057 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
1058 | } | ||||
1059 | # $a contains the result of the compare between X and Y | ||||
1060 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
1061 | if ($a <= 0) | ||||
1062 | { | ||||
1063 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
1064 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
1065 | splice(@$x,1); # keep single element | ||||
1066 | $x->[0] = 0; # if $a < 0 | ||||
1067 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
1068 | return ($x,$rem) if wantarray; # including remainder? | ||||
1069 | return $x; | ||||
1070 | } | ||||
1071 | # $x >= $y, so proceed normally | ||||
1072 | |||||
1073 | } | ||||
1074 | } | ||||
1075 | |||||
1076 | # all other cases: | ||||
1077 | |||||
1078 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
1079 | |||||
1080 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
1081 | |||||
1082 | $car = $bar = $prd = 0; | ||||
1083 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
1084 | { | ||||
1085 | for $xi (@$x) | ||||
1086 | { | ||||
1087 | $xi = $xi * $dd + $car; | ||||
1088 | $xi -= ($car = int($xi / $BASE)) * $BASE; | ||||
1089 | } | ||||
1090 | push(@$x, $car); $car = 0; | ||||
1091 | for $yi (@$y) | ||||
1092 | { | ||||
1093 | $yi = $yi * $dd + $car; | ||||
1094 | $yi -= ($car = int($yi / $BASE)) * $BASE; | ||||
1095 | } | ||||
1096 | } | ||||
1097 | else | ||||
1098 | { | ||||
1099 | push(@$x, 0); | ||||
1100 | } | ||||
1101 | |||||
1102 | # @q will accumulate the final result, $q contains the current computed | ||||
1103 | # part of the final result | ||||
1104 | |||||
1105 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
1106 | $v2 = 0 unless $v2; | ||||
1107 | while ($#$x > $#$y) | ||||
1108 | { | ||||
1109 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
1110 | $u2 = 0 unless $u2; | ||||
1111 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
1112 | # if $v1 == 0; | ||||
1113 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
1114 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
1115 | if ($q) | ||||
1116 | { | ||||
1117 | ($car, $bar) = (0,0); | ||||
1118 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
1119 | { | ||||
1120 | $prd = $q * $y->[$yi] + $car; | ||||
1121 | $prd -= ($car = int($prd / $BASE)) * $BASE; | ||||
1122 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
1123 | } | ||||
1124 | if ($x->[-1] < $car + $bar) | ||||
1125 | { | ||||
1126 | $car = 0; --$q; | ||||
1127 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
1128 | { | ||||
1129 | $x->[$xi] -= $BASE | ||||
1130 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
1131 | } | ||||
1132 | } | ||||
1133 | } | ||||
1134 | pop(@$x); unshift(@q, $q); | ||||
1135 | } | ||||
1136 | if (wantarray) | ||||
1137 | { | ||||
1138 | @d = (); | ||||
1139 | if ($dd != 1) | ||||
1140 | { | ||||
1141 | $car = 0; | ||||
1142 | for $xi (reverse @$x) | ||||
1143 | { | ||||
1144 | $prd = $car * $BASE + $xi; | ||||
1145 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; | ||||
1146 | unshift(@d, $tmp); | ||||
1147 | } | ||||
1148 | } | ||||
1149 | else | ||||
1150 | { | ||||
1151 | @d = @$x; | ||||
1152 | } | ||||
1153 | @$x = @q; | ||||
1154 | my $d = \@d; | ||||
1155 | __strip_zeros($x); | ||||
1156 | __strip_zeros($d); | ||||
1157 | return ($x,$d); | ||||
1158 | } | ||||
1159 | @$x = @q; | ||||
1160 | __strip_zeros($x); | ||||
1161 | $x; | ||||
1162 | } | ||||
1163 | |||||
1164 | ############################################################################## | ||||
1165 | # testing | ||||
1166 | |||||
1167 | sub _acmp | ||||
1168 | { | ||||
1169 | # internal absolute post-normalized compare (ignore signs) | ||||
1170 | # ref to array, ref to array, return <0, 0, >0 | ||||
1171 | # arrays must have at least one entry; this is not checked for | ||||
1172 | my ($c,$cx,$cy) = @_; | ||||
1173 | |||||
1174 | # shortcut for short numbers | ||||
1175 | return (($cx->[0] <=> $cy->[0]) <=> 0) | ||||
1176 | if scalar @$cx == scalar @$cy && scalar @$cx == 1; | ||||
1177 | |||||
1178 | # fast comp based on number of array elements (aka pseudo-length) | ||||
1179 | my $lxy = (scalar @$cx - scalar @$cy) | ||||
1180 | # or length of first element if same number of elements (aka difference 0) | ||||
1181 | || | ||||
1182 | # need int() here because sometimes the last element is '00018' vs '18' | ||||
1183 | (length(int($cx->[-1])) - length(int($cy->[-1]))); | ||||
1184 | return -1 if $lxy < 0; # already differs, ret | ||||
1185 | return 1 if $lxy > 0; # ditto | ||||
1186 | |||||
1187 | # manual way (abort if unequal, good for early ne) | ||||
1188 | my $a; my $j = scalar @$cx; | ||||
1189 | while (--$j >= 0) | ||||
1190 | { | ||||
1191 | last if ($a = $cx->[$j] - $cy->[$j]); | ||||
1192 | } | ||||
1193 | $a <=> 0; | ||||
1194 | } | ||||
1195 | |||||
1196 | sub _len | ||||
1197 | { | ||||
1198 | # compute number of digits in base 10 | ||||
1199 | |||||
1200 | # int() because add/sub sometimes leaves strings (like '00005') instead of | ||||
1201 | # '5' in this place, thus causing length() to report wrong length | ||||
1202 | my $cx = $_[1]; | ||||
1203 | |||||
1204 | (@$cx-1)*$BASE_LEN+length(int($cx->[-1])); | ||||
1205 | } | ||||
1206 | |||||
1207 | sub _digit | ||||
1208 | { | ||||
1209 | # return the nth digit, negative values count backward | ||||
1210 | # zero is rightmost, so _digit(123,0) will give 3 | ||||
1211 | my ($c,$x,$n) = @_; | ||||
1212 | |||||
1213 | my $len = _len('',$x); | ||||
1214 | |||||
1215 | $n = $len+$n if $n < 0; # -1 last, -2 second-to-last | ||||
1216 | $n = abs($n); # if negative was too big | ||||
1217 | $len--; $n = $len if $n > $len; # n to big? | ||||
1218 | |||||
1219 | my $elem = int($n / $BASE_LEN); # which array element | ||||
1220 | my $digit = $n % $BASE_LEN; # which digit in this element | ||||
1221 | $elem = '0' x $BASE_LEN . @$x[$elem]; # get element padded with 0's | ||||
1222 | substr($elem,-$digit-1,1); | ||||
1223 | } | ||||
1224 | |||||
1225 | sub _zeros | ||||
1226 | { | ||||
1227 | # return amount of trailing zeros in decimal | ||||
1228 | # check each array elem in _m for having 0 at end as long as elem == 0 | ||||
1229 | # Upon finding a elem != 0, stop | ||||
1230 | my $x = $_[1]; | ||||
1231 | |||||
1232 | return 0 if scalar @$x == 1 && $x->[0] == 0; | ||||
1233 | |||||
1234 | my $zeros = 0; my $elem; | ||||
1235 | foreach my $e (@$x) | ||||
1236 | { | ||||
1237 | if ($e != 0) | ||||
1238 | { | ||||
1239 | $elem = "$e"; # preserve x | ||||
1240 | $elem =~ s/.*?(0*$)/$1/; # strip anything not zero | ||||
1241 | $zeros *= $BASE_LEN; # elems * 5 | ||||
1242 | $zeros += length($elem); # count trailing zeros | ||||
1243 | last; # early out | ||||
1244 | } | ||||
1245 | $zeros ++; # real else branch: 50% slower! | ||||
1246 | } | ||||
1247 | $zeros; | ||||
1248 | } | ||||
1249 | |||||
1250 | ############################################################################## | ||||
1251 | # _is_* routines | ||||
1252 | |||||
1253 | sub _is_zero | ||||
1254 | { | ||||
1255 | # return true if arg is zero | ||||
1256 | (((scalar @{$_[1]} == 1) && ($_[1]->[0] == 0))) <=> 0; | ||||
1257 | } | ||||
1258 | |||||
1259 | sub _is_even | ||||
1260 | { | ||||
1261 | # return true if arg is even | ||||
1262 | (!($_[1]->[0] & 1)) <=> 0; | ||||
1263 | } | ||||
1264 | |||||
1265 | sub _is_odd | ||||
1266 | { | ||||
1267 | # return true if arg is even | ||||
1268 | (($_[1]->[0] & 1)) <=> 0; | ||||
1269 | } | ||||
1270 | |||||
1271 | sub _is_one | ||||
1272 | { | ||||
1273 | # return true if arg is one | ||||
1274 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 1) <=> 0; | ||||
1275 | } | ||||
1276 | |||||
1277 | sub _is_two | ||||
1278 | { | ||||
1279 | # return true if arg is two | ||||
1280 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 2) <=> 0; | ||||
1281 | } | ||||
1282 | |||||
1283 | sub _is_ten | ||||
1284 | { | ||||
1285 | # return true if arg is ten | ||||
1286 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 10) <=> 0; | ||||
1287 | } | ||||
1288 | |||||
1289 | sub __strip_zeros | ||||
1290 | { | ||||
1291 | # internal normalization function that strips leading zeros from the array | ||||
1292 | # args: ref to array | ||||
1293 | my $s = shift; | ||||
1294 | |||||
1295 | my $cnt = scalar @$s; # get count of parts | ||||
1296 | my $i = $cnt-1; | ||||
1297 | push @$s,0 if $i < 0; # div might return empty results, so fix it | ||||
1298 | |||||
1299 | return $s if @$s == 1; # early out | ||||
1300 | |||||
1301 | #print "strip: cnt $cnt i $i\n"; | ||||
1302 | # '0', '3', '4', '0', '0', | ||||
1303 | # 0 1 2 3 4 | ||||
1304 | # cnt = 5, i = 4 | ||||
1305 | # i = 4 | ||||
1306 | # i = 3 | ||||
1307 | # => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos) | ||||
1308 | # >= 1: skip first part (this can be zero) | ||||
1309 | while ($i > 0) { last if $s->[$i] != 0; $i--; } | ||||
1310 | $i++; splice @$s,$i if ($i < $cnt); # $i cant be 0 | ||||
1311 | $s; | ||||
1312 | } | ||||
1313 | |||||
1314 | ############################################################################### | ||||
1315 | # check routine to test internal state for corruptions | ||||
1316 | |||||
1317 | sub _check | ||||
1318 | { | ||||
1319 | # used by the test suite | ||||
1320 | my $x = $_[1]; | ||||
1321 | |||||
1322 | return "$x is not a reference" if !ref($x); | ||||
1323 | |||||
1324 | # are all parts are valid? | ||||
1325 | my $i = 0; my $j = scalar @$x; my ($e,$try); | ||||
1326 | while ($i < $j) | ||||
1327 | { | ||||
1328 | $e = $x->[$i]; $e = 'undef' unless defined $e; | ||||
1329 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e)"; | ||||
1330 | last if $e !~ /^[+]?[0-9]+$/; | ||||
1331 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (stringify)"; | ||||
1332 | last if "$e" !~ /^[+]?[0-9]+$/; | ||||
1333 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (cat-stringify)"; | ||||
1334 | last if '' . "$e" !~ /^[+]?[0-9]+$/; | ||||
1335 | $try = ' < 0 || >= $BASE; '."($x, $e)"; | ||||
1336 | last if $e <0 || $e >= $BASE; | ||||
1337 | # this test is disabled, since new/bnorm and certain ops (like early out | ||||
1338 | # in add/sub) are allowed/expected to leave '00000' in some elements | ||||
1339 | #$try = '=~ /^00+/; '."($x, $e)"; | ||||
1340 | #last if $e =~ /^00+/; | ||||
1341 | $i++; | ||||
1342 | } | ||||
1343 | return "Illegal part '$e' at pos $i (tested: $try)" if $i < $j; | ||||
1344 | 0; | ||||
1345 | } | ||||
1346 | |||||
1347 | |||||
1348 | ############################################################################### | ||||
1349 | |||||
1350 | sub _mod | ||||
1351 | { | ||||
1352 | # if possible, use mod shortcut | ||||
1353 | my ($c,$x,$yo) = @_; | ||||
1354 | |||||
1355 | # slow way since $y to big | ||||
1356 | if (scalar @$yo > 1) | ||||
1357 | { | ||||
1358 | my ($xo,$rem) = _div($c,$x,$yo); | ||||
1359 | return $rem; | ||||
1360 | } | ||||
1361 | |||||
1362 | my $y = $yo->[0]; | ||||
1363 | # both are single element arrays | ||||
1364 | if (scalar @$x == 1) | ||||
1365 | { | ||||
1366 | $x->[0] %= $y; | ||||
1367 | return $x; | ||||
1368 | } | ||||
1369 | |||||
1370 | # @y is a single element, but @x has more than one element | ||||
1371 | my $b = $BASE % $y; | ||||
1372 | if ($b == 0) | ||||
1373 | { | ||||
1374 | # when BASE % Y == 0 then (B * BASE) % Y == 0 | ||||
1375 | # (B * BASE) % $y + A % Y => A % Y | ||||
1376 | # so need to consider only last element: O(1) | ||||
1377 | $x->[0] %= $y; | ||||
1378 | } | ||||
1379 | elsif ($b == 1) | ||||
1380 | { | ||||
1381 | # else need to go through all elements: O(N), but loop is a bit simplified | ||||
1382 | my $r = 0; | ||||
1383 | foreach (@$x) | ||||
1384 | { | ||||
1385 | $r = ($r + $_) % $y; # not much faster, but heh... | ||||
1386 | #$r += $_ % $y; $r %= $y; | ||||
1387 | } | ||||
1388 | $r = 0 if $r == $y; | ||||
1389 | $x->[0] = $r; | ||||
1390 | } | ||||
1391 | else | ||||
1392 | { | ||||
1393 | # else need to go through all elements: O(N) | ||||
1394 | my $r = 0; my $bm = 1; | ||||
1395 | foreach (@$x) | ||||
1396 | { | ||||
1397 | $r = ($_ * $bm + $r) % $y; | ||||
1398 | $bm = ($bm * $b) % $y; | ||||
1399 | |||||
1400 | #$r += ($_ % $y) * $bm; | ||||
1401 | #$bm *= $b; | ||||
1402 | #$bm %= $y; | ||||
1403 | #$r %= $y; | ||||
1404 | } | ||||
1405 | $r = 0 if $r == $y; | ||||
1406 | $x->[0] = $r; | ||||
1407 | } | ||||
1408 | splice (@$x,1); # keep one element of $x | ||||
1409 | $x; | ||||
1410 | } | ||||
1411 | |||||
1412 | ############################################################################## | ||||
1413 | # shifts | ||||
1414 | |||||
1415 | sub _rsft | ||||
1416 | { | ||||
1417 | my ($c,$x,$y,$n) = @_; | ||||
1418 | |||||
1419 | if ($n != 10) | ||||
1420 | { | ||||
1421 | $n = _new($c,$n); return _div($c,$x, _pow($c,$n,$y)); | ||||
1422 | } | ||||
1423 | |||||
1424 | # shortcut (faster) for shifting by 10) | ||||
1425 | # multiples of $BASE_LEN | ||||
1426 | my $dst = 0; # destination | ||||
1427 | my $src = _num($c,$y); # as normal int | ||||
1428 | my $xlen = (@$x-1)*$BASE_LEN+length(int($x->[-1])); # len of x in digits | ||||
1429 | if ($src >= $xlen or ($src == $xlen and ! defined $x->[1])) | ||||
1430 | { | ||||
1431 | # 12345 67890 shifted right by more than 10 digits => 0 | ||||
1432 | splice (@$x,1); # leave only one element | ||||
1433 | $x->[0] = 0; # set to zero | ||||
1434 | return $x; | ||||
1435 | } | ||||
1436 | my $rem = $src % $BASE_LEN; # remainder to shift | ||||
1437 | $src = int($src / $BASE_LEN); # source | ||||
1438 | if ($rem == 0) | ||||
1439 | { | ||||
1440 | splice (@$x,0,$src); # even faster, 38.4 => 39.3 | ||||
1441 | } | ||||
1442 | else | ||||
1443 | { | ||||
1444 | my $len = scalar @$x - $src; # elems to go | ||||
1445 | my $vd; my $z = '0'x $BASE_LEN; | ||||
1446 | $x->[scalar @$x] = 0; # avoid || 0 test inside loop | ||||
1447 | while ($dst < $len) | ||||
1448 | { | ||||
1449 | $vd = $z.$x->[$src]; | ||||
1450 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN-$rem); | ||||
1451 | $src++; | ||||
1452 | $vd = substr($z.$x->[$src],-$rem,$rem) . $vd; | ||||
1453 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN; | ||||
1454 | $x->[$dst] = int($vd); | ||||
1455 | $dst++; | ||||
1456 | } | ||||
1457 | splice (@$x,$dst) if $dst > 0; # kill left-over array elems | ||||
1458 | pop @$x if $x->[-1] == 0 && @$x > 1; # kill last element if 0 | ||||
1459 | } # else rem == 0 | ||||
1460 | $x; | ||||
1461 | } | ||||
1462 | |||||
1463 | sub _lsft | ||||
1464 | { | ||||
1465 | my ($c,$x,$y,$n) = @_; | ||||
1466 | |||||
1467 | if ($n != 10) | ||||
1468 | { | ||||
1469 | $n = _new($c,$n); return _mul($c,$x, _pow($c,$n,$y)); | ||||
1470 | } | ||||
1471 | |||||
1472 | # shortcut (faster) for shifting by 10) since we are in base 10eX | ||||
1473 | # multiples of $BASE_LEN: | ||||
1474 | my $src = scalar @$x; # source | ||||
1475 | my $len = _num($c,$y); # shift-len as normal int | ||||
1476 | my $rem = $len % $BASE_LEN; # remainder to shift | ||||
1477 | my $dst = $src + int($len/$BASE_LEN); # destination | ||||
1478 | my $vd; # further speedup | ||||
1479 | $x->[$src] = 0; # avoid first ||0 for speed | ||||
1480 | my $z = '0' x $BASE_LEN; | ||||
1481 | while ($src >= 0) | ||||
1482 | { | ||||
1483 | $vd = $x->[$src]; $vd = $z.$vd; | ||||
1484 | $vd = substr($vd,-$BASE_LEN+$rem,$BASE_LEN-$rem); | ||||
1485 | $vd .= $src > 0 ? substr($z.$x->[$src-1],-$BASE_LEN,$rem) : '0' x $rem; | ||||
1486 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN; | ||||
1487 | $x->[$dst] = int($vd); | ||||
1488 | $dst--; $src--; | ||||
1489 | } | ||||
1490 | # set lowest parts to 0 | ||||
1491 | while ($dst >= 0) { $x->[$dst--] = 0; } | ||||
1492 | # fix spurios last zero element | ||||
1493 | splice @$x,-1 if $x->[-1] == 0; | ||||
1494 | $x; | ||||
1495 | } | ||||
1496 | |||||
1497 | sub _pow | ||||
1498 | { | ||||
1499 | # power of $x to $y | ||||
1500 | # ref to array, ref to array, return ref to array | ||||
1501 | my ($c,$cx,$cy) = @_; | ||||
1502 | |||||
1503 | if (scalar @$cy == 1 && $cy->[0] == 0) | ||||
1504 | { | ||||
1505 | splice (@$cx,1); $cx->[0] = 1; # y == 0 => x => 1 | ||||
1506 | return $cx; | ||||
1507 | } | ||||
1508 | if ((scalar @$cx == 1 && $cx->[0] == 1) || # x == 1 | ||||
1509 | (scalar @$cy == 1 && $cy->[0] == 1)) # or y == 1 | ||||
1510 | { | ||||
1511 | return $cx; | ||||
1512 | } | ||||
1513 | if (scalar @$cx == 1 && $cx->[0] == 0) | ||||
1514 | { | ||||
1515 | splice (@$cx,1); $cx->[0] = 0; # 0 ** y => 0 (if not y <= 0) | ||||
1516 | return $cx; | ||||
1517 | } | ||||
1518 | |||||
1519 | my $pow2 = _one(); | ||||
1520 | |||||
1521 | my $y_bin = _as_bin($c,$cy); $y_bin =~ s/^0b//; | ||||
1522 | my $len = length($y_bin); | ||||
1523 | while (--$len > 0) | ||||
1524 | { | ||||
1525 | _mul($c,$pow2,$cx) if substr($y_bin,$len,1) eq '1'; # is odd? | ||||
1526 | _mul($c,$cx,$cx); | ||||
1527 | } | ||||
1528 | |||||
1529 | _mul($c,$cx,$pow2); | ||||
1530 | $cx; | ||||
1531 | } | ||||
1532 | |||||
1533 | sub _nok | ||||
1534 | { | ||||
1535 | # n over k | ||||
1536 | # ref to array, return ref to array | ||||
1537 | my ($c,$n,$k) = @_; | ||||
1538 | |||||
1539 | # ( 7 ) 7! 7*6*5 * 4*3*2*1 7 * 6 * 5 | ||||
1540 | # ( - ) = --------- = --------------- = --------- | ||||
1541 | # ( 3 ) 3! (7-3)! 3*2*1 * 4*3*2*1 3 * 2 * 1 | ||||
1542 | |||||
1543 | # compute n - k + 2 (so we start with 5 in the example above) | ||||
1544 | my $x = _copy($c,$n); | ||||
1545 | |||||
1546 | _sub($c,$n,$k); | ||||
1547 | if (!_is_one($c,$n)) | ||||
1548 | { | ||||
1549 | _inc($c,$n); | ||||
1550 | my $f = _copy($c,$n); _inc($c,$f); # n = 5, f = 6, d = 2 | ||||
1551 | my $d = _two($c); | ||||
1552 | while (_acmp($c,$f,$x) <= 0) # f < n ? | ||||
1553 | { | ||||
1554 | # n = (n * f / d) == 5 * 6 / 2 => n == 3 | ||||
1555 | $n = _mul($c,$n,$f); $n = _div($c,$n,$d); | ||||
1556 | # f = 7, d = 3 | ||||
1557 | _inc($c,$f); _inc($c,$d); | ||||
1558 | } | ||||
1559 | } | ||||
1560 | else | ||||
1561 | { | ||||
1562 | # keep ref to $n and set it to 1 | ||||
1563 | splice (@$n,1); $n->[0] = 1; | ||||
1564 | } | ||||
1565 | $n; | ||||
1566 | } | ||||
1567 | |||||
1568 | 1 | 2µs | my @factorials = ( | ||
1569 | 1, | ||||
1570 | 1, | ||||
1571 | 2, | ||||
1572 | 2*3, | ||||
1573 | 2*3*4, | ||||
1574 | 2*3*4*5, | ||||
1575 | 2*3*4*5*6, | ||||
1576 | 2*3*4*5*6*7, | ||||
1577 | ); | ||||
1578 | |||||
1579 | sub _fac | ||||
1580 | { | ||||
1581 | # factorial of $x | ||||
1582 | # ref to array, return ref to array | ||||
1583 | my ($c,$cx) = @_; | ||||
1584 | |||||
1585 | if ((@$cx == 1) && ($cx->[0] <= 7)) | ||||
1586 | { | ||||
1587 | $cx->[0] = $factorials[$cx->[0]]; # 0 => 1, 1 => 1, 2 => 2 etc. | ||||
1588 | return $cx; | ||||
1589 | } | ||||
1590 | |||||
1591 | if ((@$cx == 1) && # we do this only if $x >= 12 and $x <= 7000 | ||||
1592 | ($cx->[0] >= 12 && $cx->[0] < 7000)) | ||||
1593 | { | ||||
1594 | |||||
1595 | # Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j) | ||||
1596 | # See http://blogten.blogspot.com/2007/01/calculating-n.html | ||||
1597 | # The above series can be expressed as factors: | ||||
1598 | # k * k - (j - i) * 2 | ||||
1599 | # We cache k*k, and calculate (j * j) as the sum of the first j odd integers | ||||
1600 | |||||
1601 | # This will not work when N exceeds the storage of a Perl scalar, however, | ||||
1602 | # in this case the algorithm would be way to slow to terminate, anyway. | ||||
1603 | |||||
1604 | # As soon as the last element of $cx is 0, we split it up and remember | ||||
1605 | # how many zeors we got so far. The reason is that n! will accumulate | ||||
1606 | # zeros at the end rather fast. | ||||
1607 | my $zero_elements = 0; | ||||
1608 | |||||
1609 | # If n is even, set n = n -1 | ||||
1610 | my $k = _num($c,$cx); my $even = 1; | ||||
1611 | if (($k & 1) == 0) | ||||
1612 | { | ||||
1613 | $even = $k; $k --; | ||||
1614 | } | ||||
1615 | # set k to the center point | ||||
1616 | $k = ($k + 1) / 2; | ||||
1617 | # print "k $k even: $even\n"; | ||||
1618 | # now calculate k * k | ||||
1619 | my $k2 = $k * $k; | ||||
1620 | my $odd = 1; my $sum = 1; | ||||
1621 | my $i = $k - 1; | ||||
1622 | # keep reference to x | ||||
1623 | my $new_x = _new($c, $k * $even); | ||||
1624 | @$cx = @$new_x; | ||||
1625 | if ($cx->[0] == 0) | ||||
1626 | { | ||||
1627 | $zero_elements ++; shift @$cx; | ||||
1628 | } | ||||
1629 | # print STDERR "x = ", _str($c,$cx),"\n"; | ||||
1630 | my $BASE2 = int(sqrt($BASE))-1; | ||||
1631 | my $j = 1; | ||||
1632 | while ($j <= $i) | ||||
1633 | { | ||||
1634 | my $m = ($k2 - $sum); $odd += 2; $sum += $odd; $j++; | ||||
1635 | while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2)) | ||||
1636 | { | ||||
1637 | $m *= ($k2 - $sum); | ||||
1638 | $odd += 2; $sum += $odd; $j++; | ||||
1639 | # print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1); | ||||
1640 | } | ||||
1641 | if ($m < $BASE) | ||||
1642 | { | ||||
1643 | _mul($c,$cx,[$m]); | ||||
1644 | } | ||||
1645 | else | ||||
1646 | { | ||||
1647 | _mul($c,$cx,$c->_new($m)); | ||||
1648 | } | ||||
1649 | if ($cx->[0] == 0) | ||||
1650 | { | ||||
1651 | $zero_elements ++; shift @$cx; | ||||
1652 | } | ||||
1653 | # print STDERR "Calculate $k2 - $sum = $m (x = ", _str($c,$cx),")\n"; | ||||
1654 | } | ||||
1655 | # multiply in the zeros again | ||||
1656 | unshift @$cx, (0) x $zero_elements; | ||||
1657 | return $cx; | ||||
1658 | } | ||||
1659 | |||||
1660 | # go forward until $base is exceeded | ||||
1661 | # limit is either $x steps (steps == 100 means a result always too high) or | ||||
1662 | # $base. | ||||
1663 | my $steps = 100; $steps = $cx->[0] if @$cx == 1; | ||||
1664 | my $r = 2; my $cf = 3; my $step = 2; my $last = $r; | ||||
1665 | while ($r*$cf < $BASE && $step < $steps) | ||||
1666 | { | ||||
1667 | $last = $r; $r *= $cf++; $step++; | ||||
1668 | } | ||||
1669 | if ((@$cx == 1) && $step == $cx->[0]) | ||||
1670 | { | ||||
1671 | # completely done, so keep reference to $x and return | ||||
1672 | $cx->[0] = $r; | ||||
1673 | return $cx; | ||||
1674 | } | ||||
1675 | |||||
1676 | # now we must do the left over steps | ||||
1677 | my $n; # steps still to do | ||||
1678 | if (scalar @$cx == 1) | ||||
1679 | { | ||||
1680 | $n = $cx->[0]; | ||||
1681 | } | ||||
1682 | else | ||||
1683 | { | ||||
1684 | $n = _copy($c,$cx); | ||||
1685 | } | ||||
1686 | |||||
1687 | # Set $cx to the last result below $BASE (but keep ref to $x) | ||||
1688 | $cx->[0] = $last; splice (@$cx,1); | ||||
1689 | # As soon as the last element of $cx is 0, we split it up and remember | ||||
1690 | # how many zeors we got so far. The reason is that n! will accumulate | ||||
1691 | # zeros at the end rather fast. | ||||
1692 | my $zero_elements = 0; | ||||
1693 | |||||
1694 | # do left-over steps fit into a scalar? | ||||
1695 | if (ref $n eq 'ARRAY') | ||||
1696 | { | ||||
1697 | # No, so use slower inc() & cmp() | ||||
1698 | # ($n is at least $BASE here) | ||||
1699 | my $base_2 = int(sqrt($BASE)) - 1; | ||||
1700 | #print STDERR "base_2: $base_2\n"; | ||||
1701 | while ($step < $base_2) | ||||
1702 | { | ||||
1703 | if ($cx->[0] == 0) | ||||
1704 | { | ||||
1705 | $zero_elements ++; shift @$cx; | ||||
1706 | } | ||||
1707 | my $b = $step * ($step + 1); $step += 2; | ||||
1708 | _mul($c,$cx,[$b]); | ||||
1709 | } | ||||
1710 | $step = [$step]; | ||||
1711 | while (_acmp($c,$step,$n) <= 0) | ||||
1712 | { | ||||
1713 | if ($cx->[0] == 0) | ||||
1714 | { | ||||
1715 | $zero_elements ++; shift @$cx; | ||||
1716 | } | ||||
1717 | _mul($c,$cx,$step); _inc($c,$step); | ||||
1718 | } | ||||
1719 | } | ||||
1720 | else | ||||
1721 | { | ||||
1722 | # Yes, so we can speed it up slightly | ||||
1723 | |||||
1724 | # print "# left over steps $n\n"; | ||||
1725 | |||||
1726 | my $base_4 = int(sqrt(sqrt($BASE))) - 2; | ||||
1727 | #print STDERR "base_4: $base_4\n"; | ||||
1728 | my $n4 = $n - 4; | ||||
1729 | while ($step < $n4 && $step < $base_4) | ||||
1730 | { | ||||
1731 | if ($cx->[0] == 0) | ||||
1732 | { | ||||
1733 | $zero_elements ++; shift @$cx; | ||||
1734 | } | ||||
1735 | my $b = $step * ($step + 1); $step += 2; $b *= $step * ($step + 1); $step += 2; | ||||
1736 | _mul($c,$cx,[$b]); | ||||
1737 | } | ||||
1738 | my $base_2 = int(sqrt($BASE)) - 1; | ||||
1739 | my $n2 = $n - 2; | ||||
1740 | #print STDERR "base_2: $base_2\n"; | ||||
1741 | while ($step < $n2 && $step < $base_2) | ||||
1742 | { | ||||
1743 | if ($cx->[0] == 0) | ||||
1744 | { | ||||
1745 | $zero_elements ++; shift @$cx; | ||||
1746 | } | ||||
1747 | my $b = $step * ($step + 1); $step += 2; | ||||
1748 | _mul($c,$cx,[$b]); | ||||
1749 | } | ||||
1750 | # do what's left over | ||||
1751 | while ($step <= $n) | ||||
1752 | { | ||||
1753 | _mul($c,$cx,[$step]); $step++; | ||||
1754 | if ($cx->[0] == 0) | ||||
1755 | { | ||||
1756 | $zero_elements ++; shift @$cx; | ||||
1757 | } | ||||
1758 | } | ||||
1759 | } | ||||
1760 | # multiply in the zeros again | ||||
1761 | unshift @$cx, (0) x $zero_elements; | ||||
1762 | $cx; # return result | ||||
1763 | } | ||||
1764 | |||||
1765 | ############################################################################# | ||||
1766 | |||||
1767 | sub _log_int | ||||
1768 | { | ||||
1769 | # calculate integer log of $x to base $base | ||||
1770 | # ref to array, ref to array - return ref to array | ||||
1771 | my ($c,$x,$base) = @_; | ||||
1772 | |||||
1773 | # X == 0 => NaN | ||||
1774 | return if (scalar @$x == 1 && $x->[0] == 0); | ||||
1775 | # BASE 0 or 1 => NaN | ||||
1776 | return if (scalar @$base == 1 && $base->[0] < 2); | ||||
1777 | my $cmp = _acmp($c,$x,$base); # X == BASE => 1 | ||||
1778 | if ($cmp == 0) | ||||
1779 | { | ||||
1780 | splice (@$x,1); $x->[0] = 1; | ||||
1781 | return ($x,1) | ||||
1782 | } | ||||
1783 | # X < BASE | ||||
1784 | if ($cmp < 0) | ||||
1785 | { | ||||
1786 | splice (@$x,1); $x->[0] = 0; | ||||
1787 | return ($x,undef); | ||||
1788 | } | ||||
1789 | |||||
1790 | my $x_org = _copy($c,$x); # preserve x | ||||
1791 | splice(@$x,1); $x->[0] = 1; # keep ref to $x | ||||
1792 | |||||
1793 | # Compute a guess for the result based on: | ||||
1794 | # $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) ) | ||||
1795 | my $len = _len($c,$x_org); | ||||
1796 | my $log = log($base->[-1]) / log(10); | ||||
1797 | |||||
1798 | # for each additional element in $base, we add $BASE_LEN to the result, | ||||
1799 | # based on the observation that log($BASE,10) is BASE_LEN and | ||||
1800 | # log(x*y) == log(x) + log(y): | ||||
1801 | $log += ((scalar @$base)-1) * $BASE_LEN; | ||||
1802 | |||||
1803 | # calculate now a guess based on the values obtained above: | ||||
1804 | my $res = int($len / $log); | ||||
1805 | |||||
1806 | $x->[0] = $res; | ||||
1807 | my $trial = _pow ($c, _copy($c, $base), $x); | ||||
1808 | my $a = _acmp($c,$trial,$x_org); | ||||
1809 | |||||
1810 | # print STDERR "# trial ", _str($c,$x)," was: $a (0 = exact, -1 too small, +1 too big)\n"; | ||||
1811 | |||||
1812 | # found an exact result? | ||||
1813 | return ($x,1) if $a == 0; | ||||
1814 | |||||
1815 | if ($a > 0) | ||||
1816 | { | ||||
1817 | # or too big | ||||
1818 | _div($c,$trial,$base); _dec($c, $x); | ||||
1819 | while (($a = _acmp($c,$trial,$x_org)) > 0) | ||||
1820 | { | ||||
1821 | # print STDERR "# big _log_int at ", _str($c,$x), "\n"; | ||||
1822 | _div($c,$trial,$base); _dec($c, $x); | ||||
1823 | } | ||||
1824 | # result is now exact (a == 0), or too small (a < 0) | ||||
1825 | return ($x, $a == 0 ? 1 : 0); | ||||
1826 | } | ||||
1827 | |||||
1828 | # else: result was to small | ||||
1829 | _mul($c,$trial,$base); | ||||
1830 | |||||
1831 | # did we now get the right result? | ||||
1832 | $a = _acmp($c,$trial,$x_org); | ||||
1833 | |||||
1834 | if ($a == 0) # yes, exactly | ||||
1835 | { | ||||
1836 | _inc($c, $x); | ||||
1837 | return ($x,1); | ||||
1838 | } | ||||
1839 | return ($x,0) if $a > 0; | ||||
1840 | |||||
1841 | # Result still too small (we should come here only if the estimate above | ||||
1842 | # was very off base): | ||||
1843 | |||||
1844 | # Now let the normal trial run obtain the real result | ||||
1845 | # Simple loop that increments $x by 2 in each step, possible overstepping | ||||
1846 | # the real result | ||||
1847 | |||||
1848 | my $base_mul = _mul($c, _copy($c,$base), $base); # $base * $base | ||||
1849 | |||||
1850 | while (($a = _acmp($c,$trial,$x_org)) < 0) | ||||
1851 | { | ||||
1852 | # print STDERR "# small _log_int at ", _str($c,$x), "\n"; | ||||
1853 | _mul($c,$trial,$base_mul); _add($c, $x, [2]); | ||||
1854 | } | ||||
1855 | |||||
1856 | my $exact = 1; | ||||
1857 | if ($a > 0) | ||||
1858 | { | ||||
1859 | # overstepped the result | ||||
1860 | _dec($c, $x); | ||||
1861 | _div($c,$trial,$base); | ||||
1862 | $a = _acmp($c,$trial,$x_org); | ||||
1863 | if ($a > 0) | ||||
1864 | { | ||||
1865 | _dec($c, $x); | ||||
1866 | } | ||||
1867 | $exact = 0 if $a != 0; # a = -1 => not exact result, a = 0 => exact | ||||
1868 | } | ||||
1869 | |||||
1870 | ($x,$exact); # return result | ||||
1871 | } | ||||
1872 | |||||
1873 | # for debugging: | ||||
1874 | 3 | 1.06ms | 2 | 217µs | # spent 122µs (27+95) within Math::BigInt::Calc::BEGIN@1874 which was called:
# once (27µs+95µs) by Math::BigInt::FastCalc::BEGIN@8 at line 1874 # spent 122µs making 1 call to Math::BigInt::Calc::BEGIN@1874
# spent 95µs making 1 call to constant::import |
1875 | 1 | 300ns | my $steps = 0; | ||
1876 | sub steps { $steps }; | ||||
1877 | |||||
1878 | sub _sqrt | ||||
1879 | { | ||||
1880 | # square-root of $x in place | ||||
1881 | # Compute a guess of the result (by rule of thumb), then improve it via | ||||
1882 | # Newton's method. | ||||
1883 | my ($c,$x) = @_; | ||||
1884 | |||||
1885 | if (scalar @$x == 1) | ||||
1886 | { | ||||
1887 | # fits into one Perl scalar, so result can be computed directly | ||||
1888 | $x->[0] = int(sqrt($x->[0])); | ||||
1889 | return $x; | ||||
1890 | } | ||||
1891 | my $y = _copy($c,$x); | ||||
1892 | # hopefully _len/2 is < $BASE, the -1 is to always undershot the guess | ||||
1893 | # since our guess will "grow" | ||||
1894 | my $l = int((_len($c,$x)-1) / 2); | ||||
1895 | |||||
1896 | my $lastelem = $x->[-1]; # for guess | ||||
1897 | my $elems = scalar @$x - 1; | ||||
1898 | # not enough digits, but could have more? | ||||
1899 | if ((length($lastelem) <= 3) && ($elems > 1)) | ||||
1900 | { | ||||
1901 | # right-align with zero pad | ||||
1902 | my $len = length($lastelem) & 1; | ||||
1903 | print "$lastelem => " if DEBUG; | ||||
1904 | $lastelem .= substr($x->[-2] . '0' x $BASE_LEN,0,$BASE_LEN); | ||||
1905 | # former odd => make odd again, or former even to even again | ||||
1906 | $lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len; | ||||
1907 | print "$lastelem\n" if DEBUG; | ||||
1908 | } | ||||
1909 | |||||
1910 | # construct $x (instead of _lsft($c,$x,$l,10) | ||||
1911 | my $r = $l % $BASE_LEN; # 10000 00000 00000 00000 ($BASE_LEN=5) | ||||
1912 | $l = int($l / $BASE_LEN); | ||||
1913 | print "l = $l " if DEBUG; | ||||
1914 | |||||
1915 | splice @$x,$l; # keep ref($x), but modify it | ||||
1916 | |||||
1917 | # we make the first part of the guess not '1000...0' but int(sqrt($lastelem)) | ||||
1918 | # that gives us: | ||||
1919 | # 14400 00000 => sqrt(14400) => guess first digits to be 120 | ||||
1920 | # 144000 000000 => sqrt(144000) => guess 379 | ||||
1921 | |||||
1922 | print "$lastelem (elems $elems) => " if DEBUG; | ||||
1923 | $lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even? | ||||
1924 | my $g = sqrt($lastelem); $g =~ s/\.//; # 2.345 => 2345 | ||||
1925 | $r -= 1 if $elems & 1 == 0; # 70 => 7 | ||||
1926 | |||||
1927 | # padd with zeros if result is too short | ||||
1928 | $x->[$l--] = int(substr($g . '0' x $r,0,$r+1)); | ||||
1929 | print "now ",$x->[-1] if DEBUG; | ||||
1930 | print " would have been ", int('1' . '0' x $r),"\n" if DEBUG; | ||||
1931 | |||||
1932 | # If @$x > 1, we could compute the second elem of the guess, too, to create | ||||
1933 | # an even better guess. Not implemented yet. Does it improve performance? | ||||
1934 | $x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero | ||||
1935 | |||||
1936 | print "start x= ",_str($c,$x),"\n" if DEBUG; | ||||
1937 | my $two = _two(); | ||||
1938 | my $last = _zero(); | ||||
1939 | my $lastlast = _zero(); | ||||
1940 | $steps = 0 if DEBUG; | ||||
1941 | while (_acmp($c,$last,$x) != 0 && _acmp($c,$lastlast,$x) != 0) | ||||
1942 | { | ||||
1943 | $steps++ if DEBUG; | ||||
1944 | $lastlast = _copy($c,$last); | ||||
1945 | $last = _copy($c,$x); | ||||
1946 | _add($c,$x, _div($c,_copy($c,$y),$x)); | ||||
1947 | _div($c,$x, $two ); | ||||
1948 | print " x= ",_str($c,$x),"\n" if DEBUG; | ||||
1949 | } | ||||
1950 | print "\nsteps in sqrt: $steps, " if DEBUG; | ||||
1951 | _dec($c,$x) if _acmp($c,$y,_mul($c,_copy($c,$x),$x)) < 0; # overshot? | ||||
1952 | print " final ",$x->[-1],"\n" if DEBUG; | ||||
1953 | $x; | ||||
1954 | } | ||||
1955 | |||||
1956 | sub _root | ||||
1957 | { | ||||
1958 | # take n'th root of $x in place (n >= 3) | ||||
1959 | my ($c,$x,$n) = @_; | ||||
1960 | |||||
1961 | if (scalar @$x == 1) | ||||
1962 | { | ||||
1963 | if (scalar @$n > 1) | ||||
1964 | { | ||||
1965 | # result will always be smaller than 2 so trunc to 1 at once | ||||
1966 | $x->[0] = 1; | ||||
1967 | } | ||||
1968 | else | ||||
1969 | { | ||||
1970 | # fits into one Perl scalar, so result can be computed directly | ||||
1971 | # cannot use int() here, because it rounds wrongly (try | ||||
1972 | # (81 ** 3) ** (1/3) to see what I mean) | ||||
1973 | #$x->[0] = int( $x->[0] ** (1 / $n->[0]) ); | ||||
1974 | # round to 8 digits, then truncate result to integer | ||||
1975 | $x->[0] = int ( sprintf ("%.8f", $x->[0] ** (1 / $n->[0]) ) ); | ||||
1976 | } | ||||
1977 | return $x; | ||||
1978 | } | ||||
1979 | |||||
1980 | # we know now that X is more than one element long | ||||
1981 | |||||
1982 | # if $n is a power of two, we can repeatedly take sqrt($X) and find the | ||||
1983 | # proper result, because sqrt(sqrt($x)) == root($x,4) | ||||
1984 | my $b = _as_bin($c,$n); | ||||
1985 | if ($b =~ /0b1(0+)$/) | ||||
1986 | { | ||||
1987 | my $count = CORE::length($1); # 0b100 => len('00') => 2 | ||||
1988 | my $cnt = $count; # counter for loop | ||||
1989 | unshift (@$x, 0); # add one element, together with one | ||||
1990 | # more below in the loop this makes 2 | ||||
1991 | while ($cnt-- > 0) | ||||
1992 | { | ||||
1993 | # 'inflate' $X by adding one element, basically computing | ||||
1994 | # $x * $BASE * $BASE. This gives us more $BASE_LEN digits for result | ||||
1995 | # since len(sqrt($X)) approx == len($x) / 2. | ||||
1996 | unshift (@$x, 0); | ||||
1997 | # calculate sqrt($x), $x is now one element to big, again. In the next | ||||
1998 | # round we make that two, again. | ||||
1999 | _sqrt($c,$x); | ||||
2000 | } | ||||
2001 | # $x is now one element to big, so truncate result by removing it | ||||
2002 | splice (@$x,0,1); | ||||
2003 | } | ||||
2004 | else | ||||
2005 | { | ||||
2006 | # trial computation by starting with 2,4,8,16 etc until we overstep | ||||
2007 | my $step; | ||||
2008 | my $trial = _two(); | ||||
2009 | |||||
2010 | # while still to do more than X steps | ||||
2011 | do | ||||
2012 | { | ||||
2013 | $step = _two(); | ||||
2014 | while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0) | ||||
2015 | { | ||||
2016 | _mul ($c, $step, [2]); | ||||
2017 | _add ($c, $trial, $step); | ||||
2018 | } | ||||
2019 | |||||
2020 | # hit exactly? | ||||
2021 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) == 0) | ||||
2022 | { | ||||
2023 | @$x = @$trial; # make copy while preserving ref to $x | ||||
2024 | return $x; | ||||
2025 | } | ||||
2026 | # overstepped, so go back on step | ||||
2027 | _sub($c, $trial, $step); | ||||
2028 | } while (scalar @$step > 1 || $step->[0] > 128); | ||||
2029 | |||||
2030 | # reset step to 2 | ||||
2031 | $step = _two(); | ||||
2032 | # add two, because $trial cannot be exactly the result (otherwise we would | ||||
2033 | # alrady have found it) | ||||
2034 | _add($c, $trial, $step); | ||||
2035 | |||||
2036 | # and now add more and more (2,4,6,8,10 etc) | ||||
2037 | while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0) | ||||
2038 | { | ||||
2039 | _add ($c, $trial, $step); | ||||
2040 | } | ||||
2041 | |||||
2042 | # hit not exactly? (overstepped) | ||||
2043 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0) | ||||
2044 | { | ||||
2045 | _dec($c,$trial); | ||||
2046 | } | ||||
2047 | |||||
2048 | # hit not exactly? (overstepped) | ||||
2049 | # 80 too small, 81 slightly too big, 82 too big | ||||
2050 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0) | ||||
2051 | { | ||||
2052 | _dec ($c, $trial); | ||||
2053 | } | ||||
2054 | |||||
2055 | @$x = @$trial; # make copy while preserving ref to $x | ||||
2056 | return $x; | ||||
2057 | } | ||||
2058 | $x; | ||||
2059 | } | ||||
2060 | |||||
2061 | ############################################################################## | ||||
2062 | # binary stuff | ||||
2063 | |||||
2064 | sub _and | ||||
2065 | { | ||||
2066 | my ($c,$x,$y) = @_; | ||||
2067 | |||||
2068 | # the shortcut makes equal, large numbers _really_ fast, and makes only a | ||||
2069 | # very small performance drop for small numbers (e.g. something with less | ||||
2070 | # than 32 bit) Since we optimize for large numbers, this is enabled. | ||||
2071 | return $x if _acmp($c,$x,$y) == 0; # shortcut | ||||
2072 | |||||
2073 | my $m = _one(); my ($xr,$yr); | ||||
2074 | my $mask = $AND_MASK; | ||||
2075 | |||||
2076 | my $x1 = $x; | ||||
2077 | my $y1 = _copy($c,$y); # make copy | ||||
2078 | $x = _zero(); | ||||
2079 | my ($b,$xrr,$yrr); | ||||
2080 | 3 | 190µs | 2 | 26µs | # spent 22µs (17+5) within Math::BigInt::Calc::BEGIN@2080 which was called:
# once (17µs+5µs) by Math::BigInt::FastCalc::BEGIN@8 at line 2080 # spent 22µs making 1 call to Math::BigInt::Calc::BEGIN@2080
# spent 5µs making 1 call to integer::import |
2081 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
2082 | { | ||||
2083 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
2084 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
2085 | |||||
2086 | # make ints() from $xr, $yr | ||||
2087 | # this is when the AND_BITS are greater than $BASE and is slower for | ||||
2088 | # small (<256 bits) numbers, but faster for large numbers. Disabled | ||||
2089 | # due to KISS principle | ||||
2090 | |||||
2091 | # $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
2092 | # $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
2093 | # _add($c,$x, _mul($c, _new( $c, ($xrr & $yrr) ), $m) ); | ||||
2094 | |||||
2095 | # 0+ due to '&' doesn't work in strings | ||||
2096 | _add($c,$x, _mul($c, [ 0+$xr->[0] & 0+$yr->[0] ], $m) ); | ||||
2097 | _mul($c,$m,$mask); | ||||
2098 | } | ||||
2099 | $x; | ||||
2100 | } | ||||
2101 | |||||
2102 | sub _xor | ||||
2103 | { | ||||
2104 | my ($c,$x,$y) = @_; | ||||
2105 | |||||
2106 | return _zero() if _acmp($c,$x,$y) == 0; # shortcut (see -and) | ||||
2107 | |||||
2108 | my $m = _one(); my ($xr,$yr); | ||||
2109 | my $mask = $XOR_MASK; | ||||
2110 | |||||
2111 | my $x1 = $x; | ||||
2112 | my $y1 = _copy($c,$y); # make copy | ||||
2113 | $x = _zero(); | ||||
2114 | my ($b,$xrr,$yrr); | ||||
2115 | 3 | 190µs | 2 | 45µs | # spent 41µs (38+4) within Math::BigInt::Calc::BEGIN@2115 which was called:
# once (38µs+4µs) by Math::BigInt::FastCalc::BEGIN@8 at line 2115 # spent 41µs making 1 call to Math::BigInt::Calc::BEGIN@2115
# spent 4µs making 1 call to integer::import |
2116 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
2117 | { | ||||
2118 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
2119 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
2120 | # make ints() from $xr, $yr (see _and()) | ||||
2121 | #$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
2122 | #$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
2123 | #_add($c,$x, _mul($c, _new( $c, ($xrr ^ $yrr) ), $m) ); | ||||
2124 | |||||
2125 | # 0+ due to '^' doesn't work in strings | ||||
2126 | _add($c,$x, _mul($c, [ 0+$xr->[0] ^ 0+$yr->[0] ], $m) ); | ||||
2127 | _mul($c,$m,$mask); | ||||
2128 | } | ||||
2129 | # the loop stops when the shorter of the two numbers is exhausted | ||||
2130 | # the remainder of the longer one will survive bit-by-bit, so we simple | ||||
2131 | # multiply-add it in | ||||
2132 | _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1); | ||||
2133 | _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1); | ||||
2134 | |||||
2135 | $x; | ||||
2136 | } | ||||
2137 | |||||
2138 | sub _or | ||||
2139 | { | ||||
2140 | my ($c,$x,$y) = @_; | ||||
2141 | |||||
2142 | return $x if _acmp($c,$x,$y) == 0; # shortcut (see _and) | ||||
2143 | |||||
2144 | my $m = _one(); my ($xr,$yr); | ||||
2145 | my $mask = $OR_MASK; | ||||
2146 | |||||
2147 | my $x1 = $x; | ||||
2148 | my $y1 = _copy($c,$y); # make copy | ||||
2149 | $x = _zero(); | ||||
2150 | my ($b,$xrr,$yrr); | ||||
2151 | 3 | 1.39ms | 2 | 18µs | # spent 15µs (12+3) within Math::BigInt::Calc::BEGIN@2151 which was called:
# once (12µs+3µs) by Math::BigInt::FastCalc::BEGIN@8 at line 2151 # spent 15µs making 1 call to Math::BigInt::Calc::BEGIN@2151
# spent 3µs making 1 call to integer::import |
2152 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
2153 | { | ||||
2154 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
2155 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
2156 | # make ints() from $xr, $yr (see _and()) | ||||
2157 | # $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
2158 | # $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
2159 | # _add($c,$x, _mul($c, _new( $c, ($xrr | $yrr) ), $m) ); | ||||
2160 | |||||
2161 | # 0+ due to '|' doesn't work in strings | ||||
2162 | _add($c,$x, _mul($c, [ 0+$xr->[0] | 0+$yr->[0] ], $m) ); | ||||
2163 | _mul($c,$m,$mask); | ||||
2164 | } | ||||
2165 | # the loop stops when the shorter of the two numbers is exhausted | ||||
2166 | # the remainder of the longer one will survive bit-by-bit, so we simple | ||||
2167 | # multiply-add it in | ||||
2168 | _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1); | ||||
2169 | _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1); | ||||
2170 | |||||
2171 | $x; | ||||
2172 | } | ||||
2173 | |||||
2174 | sub _as_hex | ||||
2175 | { | ||||
2176 | # convert a decimal number to hex (ref to array, return ref to string) | ||||
2177 | my ($c,$x) = @_; | ||||
2178 | |||||
2179 | # fits into one element (handle also 0x0 case) | ||||
2180 | return sprintf("0x%x",$x->[0]) if @$x == 1; | ||||
2181 | |||||
2182 | my $x1 = _copy($c,$x); | ||||
2183 | |||||
2184 | my $es = ''; | ||||
2185 | my ($xr, $h, $x10000); | ||||
2186 | if ($] >= 5.006) | ||||
2187 | { | ||||
2188 | $x10000 = [ 0x10000 ]; $h = 'h4'; | ||||
2189 | } | ||||
2190 | else | ||||
2191 | { | ||||
2192 | $x10000 = [ 0x1000 ]; $h = 'h3'; | ||||
2193 | } | ||||
2194 | while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() | ||||
2195 | { | ||||
2196 | ($x1, $xr) = _div($c,$x1,$x10000); | ||||
2197 | $es .= unpack($h,pack('V',$xr->[0])); | ||||
2198 | } | ||||
2199 | $es = reverse $es; | ||||
2200 | $es =~ s/^[0]+//; # strip leading zeros | ||||
2201 | '0x' . $es; # return result prepended with 0x | ||||
2202 | } | ||||
2203 | |||||
2204 | sub _as_bin | ||||
2205 | { | ||||
2206 | # convert a decimal number to bin (ref to array, return ref to string) | ||||
2207 | my ($c,$x) = @_; | ||||
2208 | |||||
2209 | # fits into one element (and Perl recent enough), handle also 0b0 case | ||||
2210 | # handle zero case for older Perls | ||||
2211 | if ($] <= 5.005 && @$x == 1 && $x->[0] == 0) | ||||
2212 | { | ||||
2213 | my $t = '0b0'; return $t; | ||||
2214 | } | ||||
2215 | if (@$x == 1 && $] >= 5.006) | ||||
2216 | { | ||||
2217 | my $t = sprintf("0b%b",$x->[0]); | ||||
2218 | return $t; | ||||
2219 | } | ||||
2220 | my $x1 = _copy($c,$x); | ||||
2221 | |||||
2222 | my $es = ''; | ||||
2223 | my ($xr, $b, $x10000); | ||||
2224 | if ($] >= 5.006) | ||||
2225 | { | ||||
2226 | $x10000 = [ 0x10000 ]; $b = 'b16'; | ||||
2227 | } | ||||
2228 | else | ||||
2229 | { | ||||
2230 | $x10000 = [ 0x1000 ]; $b = 'b12'; | ||||
2231 | } | ||||
2232 | while (!(@$x1 == 1 && $x1->[0] == 0)) # _is_zero() | ||||
2233 | { | ||||
2234 | ($x1, $xr) = _div($c,$x1,$x10000); | ||||
2235 | $es .= unpack($b,pack('v',$xr->[0])); | ||||
2236 | } | ||||
2237 | $es = reverse $es; | ||||
2238 | $es =~ s/^[0]+//; # strip leading zeros | ||||
2239 | '0b' . $es; # return result prepended with 0b | ||||
2240 | } | ||||
2241 | |||||
2242 | sub _as_oct | ||||
2243 | { | ||||
2244 | # convert a decimal number to octal (ref to array, return ref to string) | ||||
2245 | my ($c,$x) = @_; | ||||
2246 | |||||
2247 | # fits into one element (handle also 0 case) | ||||
2248 | return sprintf("0%o",$x->[0]) if @$x == 1; | ||||
2249 | |||||
2250 | my $x1 = _copy($c,$x); | ||||
2251 | |||||
2252 | my $es = ''; | ||||
2253 | my $xr; | ||||
2254 | my $x1000 = [ 0100000 ]; | ||||
2255 | while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() | ||||
2256 | { | ||||
2257 | ($x1, $xr) = _div($c,$x1,$x1000); | ||||
2258 | $es .= reverse sprintf("%05o", $xr->[0]); | ||||
2259 | } | ||||
2260 | $es = reverse $es; | ||||
2261 | $es =~ s/^[0]+//; # strip leading zeros | ||||
2262 | '0' . $es; # return result prepended with 0 | ||||
2263 | } | ||||
2264 | |||||
2265 | sub _from_oct | ||||
2266 | { | ||||
2267 | # convert a octal number to decimal (string, return ref to array) | ||||
2268 | my ($c,$os) = @_; | ||||
2269 | |||||
2270 | # for older Perls, play safe | ||||
2271 | my $m = [ 0100000 ]; | ||||
2272 | my $d = 5; # 5 digits at a time | ||||
2273 | |||||
2274 | my $mul = _one(); | ||||
2275 | my $x = _zero(); | ||||
2276 | |||||
2277 | my $len = int( (length($os)-1)/$d ); # $d digit parts, w/o the '0' | ||||
2278 | my $val; my $i = -$d; | ||||
2279 | while ($len >= 0) | ||||
2280 | { | ||||
2281 | $val = substr($os,$i,$d); # get oct digits | ||||
2282 | $val = CORE::oct($val); | ||||
2283 | $i -= $d; $len --; | ||||
2284 | my $adder = [ $val ]; | ||||
2285 | _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0; | ||||
2286 | _mul ($c, $mul, $m ) if $len >= 0; # skip last mul | ||||
2287 | } | ||||
2288 | $x; | ||||
2289 | } | ||||
2290 | |||||
2291 | sub _from_hex | ||||
2292 | { | ||||
2293 | # convert a hex number to decimal (string, return ref to array) | ||||
2294 | my ($c,$hs) = @_; | ||||
2295 | |||||
2296 | my $m = _new($c, 0x10000000); # 28 bit at a time (<32 bit!) | ||||
2297 | my $d = 7; # 7 digits at a time | ||||
2298 | if ($] <= 5.006) | ||||
2299 | { | ||||
2300 | # for older Perls, play safe | ||||
2301 | $m = [ 0x10000 ]; # 16 bit at a time (<32 bit!) | ||||
2302 | $d = 4; # 4 digits at a time | ||||
2303 | } | ||||
2304 | |||||
2305 | my $mul = _one(); | ||||
2306 | my $x = _zero(); | ||||
2307 | |||||
2308 | my $len = int( (length($hs)-2)/$d ); # $d digit parts, w/o the '0x' | ||||
2309 | my $val; my $i = -$d; | ||||
2310 | while ($len >= 0) | ||||
2311 | { | ||||
2312 | $val = substr($hs,$i,$d); # get hex digits | ||||
2313 | $val =~ s/^0x// if $len == 0; # for last part only because | ||||
2314 | $val = CORE::hex($val); # hex does not like wrong chars | ||||
2315 | $i -= $d; $len --; | ||||
2316 | my $adder = [ $val ]; | ||||
2317 | # if the resulting number was to big to fit into one element, create a | ||||
2318 | # two-element version (bug found by Mark Lakata - Thanx!) | ||||
2319 | if (CORE::length($val) > $BASE_LEN) | ||||
2320 | { | ||||
2321 | $adder = _new($c,$val); | ||||
2322 | } | ||||
2323 | _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0; | ||||
2324 | _mul ($c, $mul, $m ) if $len >= 0; # skip last mul | ||||
2325 | } | ||||
2326 | $x; | ||||
2327 | } | ||||
2328 | |||||
2329 | sub _from_bin | ||||
2330 | { | ||||
2331 | # convert a hex number to decimal (string, return ref to array) | ||||
2332 | my ($c,$bs) = @_; | ||||
2333 | |||||
2334 | # instead of converting X (8) bit at a time, it is faster to "convert" the | ||||
2335 | # number to hex, and then call _from_hex. | ||||
2336 | |||||
2337 | my $hs = $bs; | ||||
2338 | $hs =~ s/^[+-]?0b//; # remove sign and 0b | ||||
2339 | my $l = length($hs); # bits | ||||
2340 | $hs = '0' x (8-($l % 8)) . $hs if ($l % 8) != 0; # padd left side w/ 0 | ||||
2341 | my $h = '0x' . unpack('H*', pack ('B*', $hs)); # repack as hex | ||||
2342 | |||||
2343 | $c->_from_hex($h); | ||||
2344 | } | ||||
2345 | |||||
2346 | ############################################################################## | ||||
2347 | # special modulus functions | ||||
2348 | |||||
2349 | sub _modinv | ||||
2350 | { | ||||
2351 | # modular inverse | ||||
2352 | my ($c,$x,$y) = @_; | ||||
2353 | |||||
2354 | my $u = _zero($c); my $u1 = _one($c); | ||||
2355 | my $a = _copy($c,$y); my $b = _copy($c,$x); | ||||
2356 | |||||
2357 | # Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the | ||||
2358 | # result ($u) at the same time. See comments in BigInt for why this works. | ||||
2359 | my $q; | ||||
2360 | ($a, $q, $b) = ($b, _div($c,$a,$b)); # step 1 | ||||
2361 | my $sign = 1; | ||||
2362 | while (!_is_zero($c,$b)) | ||||
2363 | { | ||||
2364 | my $t = _add($c, # step 2: | ||||
2365 | _mul($c,_copy($c,$u1), $q) , # t = u1 * q | ||||
2366 | $u ); # + u | ||||
2367 | $u = $u1; # u = u1, u1 = t | ||||
2368 | $u1 = $t; | ||||
2369 | $sign = -$sign; | ||||
2370 | ($a, $q, $b) = ($b, _div($c,$a,$b)); # step 1 | ||||
2371 | } | ||||
2372 | |||||
2373 | # if the gcd is not 1, then return NaN | ||||
2374 | return (undef,undef) unless _is_one($c,$a); | ||||
2375 | |||||
2376 | ($u1, $sign == 1 ? '+' : '-'); | ||||
2377 | } | ||||
2378 | |||||
2379 | sub _modpow | ||||
2380 | { | ||||
2381 | # modulus of power ($x ** $y) % $z | ||||
2382 | my ($c,$num,$exp,$mod) = @_; | ||||
2383 | |||||
2384 | # in the trivial case, | ||||
2385 | if (_is_one($c,$mod)) | ||||
2386 | { | ||||
2387 | splice @$num,0,1; $num->[0] = 0; | ||||
2388 | return $num; | ||||
2389 | } | ||||
2390 | if ((scalar @$num == 1) && (($num->[0] == 0) || ($num->[0] == 1))) | ||||
2391 | { | ||||
2392 | $num->[0] = 1; | ||||
2393 | return $num; | ||||
2394 | } | ||||
2395 | |||||
2396 | # $num = _mod($c,$num,$mod); # this does not make it faster | ||||
2397 | |||||
2398 | my $acc = _copy($c,$num); my $t = _one(); | ||||
2399 | |||||
2400 | my $expbin = _as_bin($c,$exp); $expbin =~ s/^0b//; | ||||
2401 | my $len = length($expbin); | ||||
2402 | while (--$len >= 0) | ||||
2403 | { | ||||
2404 | if ( substr($expbin,$len,1) eq '1') # is_odd | ||||
2405 | { | ||||
2406 | _mul($c,$t,$acc); | ||||
2407 | $t = _mod($c,$t,$mod); | ||||
2408 | } | ||||
2409 | _mul($c,$acc,$acc); | ||||
2410 | $acc = _mod($c,$acc,$mod); | ||||
2411 | } | ||||
2412 | @$num = @$t; | ||||
2413 | $num; | ||||
2414 | } | ||||
2415 | |||||
2416 | sub _gcd | ||||
2417 | { | ||||
2418 | # greatest common divisor | ||||
2419 | my ($c,$x,$y) = @_; | ||||
2420 | |||||
2421 | while ( (scalar @$y != 1) || ($y->[0] != 0) ) # while ($y != 0) | ||||
2422 | { | ||||
2423 | my $t = _copy($c,$y); | ||||
2424 | $y = _mod($c, $x, $y); | ||||
2425 | $x = $t; | ||||
2426 | } | ||||
2427 | $x; | ||||
2428 | } | ||||
2429 | |||||
2430 | ############################################################################## | ||||
2431 | ############################################################################## | ||||
2432 | |||||
2433 | 1 | 7µs | 1; | ||
2434 | __END__ | ||||
# spent 11µs within Math::BigInt::Calc::CORE:match which was called 12 times, avg 883ns/call:
# 7 times (4µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 123, avg 600ns/call
# 3 times (3µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 141, avg 1µs/call
# once (2µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 130
# once (900ns+0s) by Math::BigInt::Calc::BEGIN@117 at line 131 | |||||
sub Math::BigInt::Calc::CORE:regcomp; # opcode |