Filename | /usr/share/perl/5.20/Math/BigInt/Calc.pm |
Statements | Executed 307 statements in 9.05ms |
Calls | P | F | Exclusive Time |
Inclusive Time |
Subroutine |
---|---|---|---|---|---|
1 | 1 | 1 | 127µs | 203µs | BEGIN@117 | Math::BigInt::Calc::
10 | 2 | 1 | 50µs | 50µs | CORE:regcomp (opcode) | Math::BigInt::Calc::
1 | 1 | 1 | 22µs | 22µs | BEGIN@3 | Math::BigInt::Calc::
4 | 4 | 2 | 12µs | 12µs | _new | Math::BigInt::Calc::
1 | 1 | 1 | 11µs | 55µs | BEGIN@1909 | Math::BigInt::Calc::
1 | 1 | 1 | 11µs | 14µs | BEGIN@137 | Math::BigInt::Calc::
1 | 1 | 1 | 11µs | 13µs | BEGIN@475 | Math::BigInt::Calc::
1 | 1 | 1 | 11µs | 11µs | _base_len | Math::BigInt::Calc::
1 | 1 | 1 | 10µs | 11µs | BEGIN@2186 | Math::BigInt::Calc::
1 | 1 | 1 | 8µs | 10µs | BEGIN@2115 | Math::BigInt::Calc::
1 | 1 | 1 | 8µs | 10µs | BEGIN@792 | Math::BigInt::Calc::
1 | 1 | 1 | 8µs | 10µs | BEGIN@165 | Math::BigInt::Calc::
1 | 1 | 1 | 8µs | 9µs | BEGIN@154 | Math::BigInt::Calc::
1 | 1 | 1 | 7µs | 8µs | BEGIN@2150 | Math::BigInt::Calc::
12 | 4 | 1 | 6µs | 6µs | CORE:match (opcode) | Math::BigInt::Calc::
1 | 1 | 1 | 6µs | 18µs | BEGIN@4 | Math::BigInt::Calc::
1 | 1 | 1 | 6µs | 6µs | _str | Math::BigInt::Calc::
1 | 1 | 1 | 2µs | 2µs | _zero | Math::BigInt::Calc::
1 | 1 | 1 | 1µs | 1µs | import | Math::BigInt::Calc::
1 | 1 | 1 | 400ns | 400ns | api_version (xsub) | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _1ex | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | __strip_zeros | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _acmp | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _add | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _and | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _as_bin | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _as_hex | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _as_oct | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _check | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _copy | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _dec | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _digit | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _div_use_div | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _div_use_div_64 | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _div_use_mul | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _fac | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _from_bin | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _from_hex | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _from_oct | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _gcd | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _inc | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_even | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_odd | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_one | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_ten | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_two | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _is_zero | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _len | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _log_int | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _lsft | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _mod | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _modinv | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _modpow | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _mul_use_div | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _mul_use_div_64 | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _mul_use_mul | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _nok | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _num | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _one | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _or | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _pow | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _root | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _rsft | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _sqrt | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _sub | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _ten | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _two | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _xor | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | _zeros | Math::BigInt::Calc::
0 | 0 | 0 | 0s | 0s | steps | Math::BigInt::Calc::
Line | State ments |
Time on line |
Calls | Time in subs |
Code |
---|---|---|---|---|---|
1 | package Math::BigInt::Calc; | ||||
2 | |||||
3 | 2 | 48µs | 1 | 22µs | # spent 22µs within Math::BigInt::Calc::BEGIN@3 which was called:
# once (22µs+0s) by Math::BigInt::BEGIN@1 at line 3 # spent 22µs making 1 call to Math::BigInt::Calc::BEGIN@3 |
4 | 2 | 393µs | 2 | 29µs | # spent 18µs (6+11) within Math::BigInt::Calc::BEGIN@4 which was called:
# once (6µs+11µs) by Math::BigInt::BEGIN@1 at line 4 # spent 18µs making 1 call to Math::BigInt::Calc::BEGIN@4
# spent 12µs making 1 call to strict::import |
5 | # use warnings; # do not use warnings for older Perls | ||||
6 | |||||
7 | 1 | 500ns | our $VERSION = '1.998'; | ||
8 | |||||
9 | # Package to store unsigned big integers in decimal and do math with them | ||||
10 | |||||
11 | # Internally the numbers are stored in an array with at least 1 element, no | ||||
12 | # leading zero parts (except the first) and in base 1eX where X is determined | ||||
13 | # automatically at loading time to be the maximum possible value | ||||
14 | |||||
15 | # todo: | ||||
16 | # - fully remove funky $# stuff in div() (maybe - that code scares me...) | ||||
17 | |||||
18 | # USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used | ||||
19 | # instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms | ||||
20 | # BS2000, some Crays need USE_DIV instead. | ||||
21 | # The BEGIN block is used to determine which of the two variants gives the | ||||
22 | # correct result. | ||||
23 | |||||
24 | # Beware of things like: | ||||
25 | # $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE; | ||||
26 | # This works on x86, but fails on ARM (SA1100, iPAQ) due to who knows what | ||||
27 | # reasons. So, use this instead (slower, but correct): | ||||
28 | # $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car; | ||||
29 | |||||
30 | ############################################################################## | ||||
31 | # global constants, flags and accessory | ||||
32 | |||||
33 | # announce that we are compatible with MBI v1.83 and up | ||||
34 | sub api_version () { 2; } | ||||
35 | |||||
36 | # constants for easier life | ||||
37 | 1 | 100ns | my ($BASE,$BASE_LEN,$RBASE,$MAX_VAL); | ||
38 | my ($AND_BITS,$XOR_BITS,$OR_BITS); | ||||
39 | my ($AND_MASK,$XOR_MASK,$OR_MASK); | ||||
40 | |||||
41 | sub _base_len | ||||
42 | # spent 11µs within Math::BigInt::Calc::_base_len which was called:
# once (11µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 152 | ||||
43 | # Set/get the BASE_LEN and assorted other, connected values. | ||||
44 | # Used only by the testsuite, the set variant is used only by the BEGIN | ||||
45 | # block below: | ||||
46 | 1 | 100ns | shift; | ||
47 | |||||
48 | 1 | 400ns | my ($b, $int) = @_; | ||
49 | 1 | 200ns | if (defined $b) | ||
50 | { | ||||
51 | # avoid redefinitions | ||||
52 | 1 | 2µs | undef &_mul; | ||
53 | 1 | 500ns | undef &_div; | ||
54 | |||||
55 | 1 | 600ns | if ($] >= 5.008 && $int && $b > 7) | ||
56 | { | ||||
57 | 1 | 300ns | $BASE_LEN = $b; | ||
58 | 1 | 2µs | *_mul = \&_mul_use_div_64; | ||
59 | 1 | 700ns | *_div = \&_div_use_div_64; | ||
60 | 1 | 2µs | $BASE = int("1e".$BASE_LEN); | ||
61 | 1 | 800ns | $MAX_VAL = $BASE-1; | ||
62 | 1 | 4µs | return $BASE_LEN unless wantarray; | ||
63 | return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL,); | ||||
64 | } | ||||
65 | |||||
66 | # find whether we can use mul or div in mul()/div() | ||||
67 | $BASE_LEN = $b+1; | ||||
68 | my $caught = 0; | ||||
69 | while (--$BASE_LEN > 5) | ||||
70 | { | ||||
71 | $BASE = int("1e".$BASE_LEN); | ||||
72 | $RBASE = abs('1e-'.$BASE_LEN); # see USE_MUL | ||||
73 | $caught = 0; | ||||
74 | $caught += 1 if (int($BASE * $RBASE) != 1); # should be 1 | ||||
75 | $caught += 2 if (int($BASE / $BASE) != 1); # should be 1 | ||||
76 | last if $caught != 3; | ||||
77 | } | ||||
78 | $BASE = int("1e".$BASE_LEN); | ||||
79 | $RBASE = abs('1e-'.$BASE_LEN); # see USE_MUL | ||||
80 | $MAX_VAL = $BASE-1; | ||||
81 | |||||
82 | # ($caught & 1) != 0 => cannot use MUL | ||||
83 | # ($caught & 2) != 0 => cannot use DIV | ||||
84 | if ($caught == 2) # 2 | ||||
85 | { | ||||
86 | # must USE_MUL since we cannot use DIV | ||||
87 | *_mul = \&_mul_use_mul; | ||||
88 | *_div = \&_div_use_mul; | ||||
89 | } | ||||
90 | else # 0 or 1 | ||||
91 | { | ||||
92 | # can USE_DIV instead | ||||
93 | *_mul = \&_mul_use_div; | ||||
94 | *_div = \&_div_use_div; | ||||
95 | } | ||||
96 | } | ||||
97 | return $BASE_LEN unless wantarray; | ||||
98 | return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL); | ||||
99 | } | ||||
100 | |||||
101 | sub _new | ||||
102 | # spent 12µs within Math::BigInt::Calc::_new which was called 4 times, avg 3µs/call:
# once (5µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 188
# once (3µs+0s) by Math::BigInt::new at line 642 of Math/BigInt.pm
# once (2µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 189
# once (2µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 190 | ||||
103 | # (ref to string) return ref to num_array | ||||
104 | # Convert a number from string format (without sign) to internal base | ||||
105 | # 1ex format. Assumes normalized value as input. | ||||
106 | 4 | 6µs | my $il = length($_[1])-1; | ||
107 | |||||
108 | # < BASE_LEN due len-1 above | ||||
109 | 4 | 12µs | return [ int($_[1]) ] if $il < $BASE_LEN; # shortcut for short numbers | ||
110 | |||||
111 | # this leaves '00000' instead of int 0 and will be corrected after any op | ||||
112 | [ reverse(unpack("a" . ($il % $BASE_LEN+1) | ||||
113 | . ("a$BASE_LEN" x ($il / $BASE_LEN)), $_[1])) ]; | ||||
114 | } | ||||
115 | |||||
116 | BEGIN | ||||
117 | # spent 203µs (127+77) within Math::BigInt::Calc::BEGIN@117 which was called:
# once (127µs+77µs) by Math::BigInt::BEGIN@1 at line 194 | ||||
118 | # from Daniel Pfeiffer: determine largest group of digits that is precisely | ||||
119 | # multipliable with itself plus carry | ||||
120 | # Test now changed to expect the proper pattern, not a result off by 1 or 2 | ||||
121 | 1 | 500ns | my ($e, $num) = 3; # lowest value we will use is 3+1-1 = 3 | ||
122 | do | ||||
123 | 1 | 71µs | 14 | 40µs | { # spent 37µs making 7 calls to Math::BigInt::Calc::CORE:regcomp, avg 5µs/call
# spent 4µs making 7 calls to Math::BigInt::Calc::CORE:match, avg 500ns/call |
124 | 7 | 5µs | $num = ('9' x ++$e) + 0; | ||
125 | 7 | 3µs | $num *= $num + 1.0; | ||
126 | } while ("$num" =~ /9{$e}0{$e}/); # must be a certain pattern | ||||
127 | 1 | 4µs | $e--; # last test failed, so retract one step | ||
128 | # the limits below brush the problems with the test above under the rug: | ||||
129 | # the test should be able to find the proper $e automatically | ||||
130 | 1 | 4µs | 1 | 2µs | $e = 5 if $^O =~ /^uts/; # UTS get's some special treatment # spent 2µs making 1 call to Math::BigInt::Calc::CORE:match |
131 | 1 | 2µs | 1 | 300ns | $e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work # spent 300ns making 1 call to Math::BigInt::Calc::CORE:match |
132 | # there, but we play safe) | ||||
133 | |||||
134 | 1 | 200ns | my $int = 0; | ||
135 | 1 | 400ns | if ($e > 7) | ||
136 | { | ||||
137 | 2 | 76µs | 2 | 16µs | # spent 14µs (11+2) within Math::BigInt::Calc::BEGIN@137 which was called:
# once (11µs+2µs) by Math::BigInt::BEGIN@1 at line 137 # spent 14µs making 1 call to Math::BigInt::Calc::BEGIN@137
# spent 2µs making 1 call to integer::import |
138 | 1 | 100ns | my $e1 = 7; | ||
139 | 1 | 200ns | $num = 7; | ||
140 | do | ||||
141 | 1 | 24µs | 6 | 14µs | { # spent 13µs making 3 calls to Math::BigInt::Calc::CORE:regcomp, avg 4µs/call
# spent 1µs making 3 calls to Math::BigInt::Calc::CORE:match, avg 367ns/call |
142 | 3 | 2µs | $num = ('9' x ++$e1) + 0; | ||
143 | 3 | 700ns | $num *= $num + 1; | ||
144 | } while ("$num" =~ /9{$e1}0{$e1}/); # must be a certain pattern | ||||
145 | 1 | 100ns | $e1--; # last test failed, so retract one step | ||
146 | 1 | 300ns | if ($e1 > 7) | ||
147 | { | ||||
148 | 2 | 300ns | $int = 1; $e = $e1; | ||
149 | } | ||||
150 | } | ||||
151 | |||||
152 | 1 | 3µs | 1 | 11µs | __PACKAGE__->_base_len($e,$int); # set and store # spent 11µs making 1 call to Math::BigInt::Calc::_base_len |
153 | |||||
154 | 2 | 45µs | 2 | 10µs | # spent 9µs (8+1) within Math::BigInt::Calc::BEGIN@154 which was called:
# once (8µs+1µs) by Math::BigInt::BEGIN@1 at line 154 # spent 9µs making 1 call to Math::BigInt::Calc::BEGIN@154
# spent 1µs making 1 call to integer::import |
155 | # find out how many bits _and, _or and _xor can take (old default = 16) | ||||
156 | # I don't think anybody has yet 128 bit scalars, so let's play safe. | ||||
157 | 1 | 2µs | local $^W = 0; # don't warn about 'nonportable number' | ||
158 | 3 | 400ns | $AND_BITS = 15; $XOR_BITS = 15; $OR_BITS = 15; | ||
159 | |||||
160 | # find max bits, we will not go higher than numberofbits that fit into $BASE | ||||
161 | # to make _and etc simpler (and faster for smaller, slower for large numbers) | ||||
162 | 1 | 100ns | my $max = 16; | ||
163 | 15 | 3µs | while (2 ** $max < $BASE) { $max++; } | ||
164 | { | ||||
165 | 3 | 139µs | 2 | 13µs | # spent 10µs (8+2) within Math::BigInt::Calc::BEGIN@165 which was called:
# once (8µs+2µs) by Math::BigInt::BEGIN@1 at line 165 # spent 10µs making 1 call to Math::BigInt::Calc::BEGIN@165
# spent 2µs making 1 call to integer::unimport |
166 | 1 | 200ns | $max = 16 if $] < 5.006; # older Perls might not take >16 too well | ||
167 | } | ||||
168 | 1 | 100ns | my ($x,$y,$z); | ||
169 | 1 | 4µs | do { | ||
170 | 15 | 1µs | $AND_BITS++; | ||
171 | 30 | 8µs | $x = CORE::oct('0b' . '1' x $AND_BITS); $y = $x & $x; | ||
172 | 15 | 3µs | $z = (2 ** $AND_BITS) - 1; | ||
173 | } while ($AND_BITS < $max && $x == $z && $y == $x); | ||||
174 | 1 | 100ns | $AND_BITS --; # retreat one step | ||
175 | 1 | 3µs | do { | ||
176 | 15 | 1µs | $XOR_BITS++; | ||
177 | 30 | 6µs | $x = CORE::oct('0b' . '1' x $XOR_BITS); $y = $x ^ 0; | ||
178 | 15 | 2µs | $z = (2 ** $XOR_BITS) - 1; | ||
179 | } while ($XOR_BITS < $max && $x == $z && $y == $x); | ||||
180 | 1 | 0s | $XOR_BITS --; # retreat one step | ||
181 | 1 | 3µs | do { | ||
182 | 15 | 1µs | $OR_BITS++; | ||
183 | 30 | 6µs | $x = CORE::oct('0b' . '1' x $OR_BITS); $y = $x | $x; | ||
184 | 15 | 2µs | $z = (2 ** $OR_BITS) - 1; | ||
185 | } while ($OR_BITS < $max && $x == $z && $y == $x); | ||||
186 | 1 | 100ns | $OR_BITS --; # retreat one step | ||
187 | |||||
188 | 1 | 2µs | 1 | 5µs | $AND_MASK = __PACKAGE__->_new( ( 2 ** $AND_BITS )); # spent 5µs making 1 call to Math::BigInt::Calc::_new |
189 | 1 | 1µs | 1 | 2µs | $XOR_MASK = __PACKAGE__->_new( ( 2 ** $XOR_BITS )); # spent 2µs making 1 call to Math::BigInt::Calc::_new |
190 | 1 | 1µs | 1 | 2µs | $OR_MASK = __PACKAGE__->_new( ( 2 ** $OR_BITS )); # spent 2µs making 1 call to Math::BigInt::Calc::_new |
191 | |||||
192 | # We can compute the approximate length no faster than the real length: | ||||
193 | 1 | 4µs | *_alen = \&_len; | ||
194 | 1 | 792µs | 1 | 203µs | } # spent 203µs making 1 call to Math::BigInt::Calc::BEGIN@117 |
195 | |||||
196 | ############################################################################### | ||||
197 | |||||
198 | sub _zero | ||||
199 | # spent 2µs within Math::BigInt::Calc::_zero which was called:
# once (2µs+0s) by Math::BigInt::new at line 589 of Math/BigInt.pm | ||||
200 | # create a zero | ||||
201 | 1 | 4µs | [ 0 ]; | ||
202 | } | ||||
203 | |||||
204 | sub _one | ||||
205 | { | ||||
206 | # create a one | ||||
207 | [ 1 ]; | ||||
208 | } | ||||
209 | |||||
210 | sub _two | ||||
211 | { | ||||
212 | # create a two (used internally for shifting) | ||||
213 | [ 2 ]; | ||||
214 | } | ||||
215 | |||||
216 | sub _ten | ||||
217 | { | ||||
218 | # create a 10 (used internally for shifting) | ||||
219 | [ 10 ]; | ||||
220 | } | ||||
221 | |||||
222 | sub _1ex | ||||
223 | { | ||||
224 | # create a 1Ex | ||||
225 | my $rem = $_[1] % $BASE_LEN; # remainder | ||||
226 | my $parts = $_[1] / $BASE_LEN; # parts | ||||
227 | |||||
228 | # 000000, 000000, 100 | ||||
229 | [ (0) x $parts, '1' . ('0' x $rem) ]; | ||||
230 | } | ||||
231 | |||||
232 | sub _copy | ||||
233 | { | ||||
234 | # make a true copy | ||||
235 | [ @{$_[1]} ]; | ||||
236 | } | ||||
237 | |||||
238 | # catch and throw away | ||||
239 | 1 | 4µs | # spent 1µs within Math::BigInt::Calc::import which was called:
# once (1µs+0s) by Math::BigInt::BEGIN@1 at line 1 of (eval 48)[Math/BigInt.pm:2820] | ||
240 | |||||
241 | ############################################################################## | ||||
242 | # convert back to string and number | ||||
243 | |||||
244 | sub _str | ||||
245 | # spent 6µs within Math::BigInt::Calc::_str which was called:
# once (6µs+0s) by Math::BigInt::bstr at line 836 of Math/BigInt.pm | ||||
246 | # (ref to BINT) return num_str | ||||
247 | # Convert number from internal base 100000 format to string format. | ||||
248 | # internal format is always normalized (no leading zeros, "-0" => "+0") | ||||
249 | 1 | 400ns | my $ar = $_[1]; | ||
250 | |||||
251 | 1 | 300ns | my $l = scalar @$ar; # number of parts | ||
252 | 1 | 200ns | if ($l < 1) # should not happen | ||
253 | { | ||||
254 | require Carp; | ||||
255 | Carp::croak("$_[1] has no elements"); | ||||
256 | } | ||||
257 | |||||
258 | 1 | 200ns | my $ret = ""; | ||
259 | # handle first one different to strip leading zeros from it (there are no | ||||
260 | # leading zero parts in internal representation) | ||||
261 | 3 | 1µs | $l --; $ret .= int($ar->[$l]); $l--; | ||
262 | # Interestingly, the pre-padd method uses more time | ||||
263 | # the old grep variant takes longer (14 vs. 10 sec) | ||||
264 | 1 | 1µs | my $z = '0' x ($BASE_LEN-1); | ||
265 | 1 | 800ns | while ($l >= 0) | ||
266 | { | ||||
267 | $ret .= substr($z.$ar->[$l],-$BASE_LEN); # fastest way I could think of | ||||
268 | $l--; | ||||
269 | } | ||||
270 | 1 | 2µs | $ret; | ||
271 | } | ||||
272 | |||||
273 | sub _num | ||||
274 | { | ||||
275 | # Make a Perl scalar number (int/float) from a BigInt object. | ||||
276 | my $x = $_[1]; | ||||
277 | |||||
278 | return 0 + $x->[0] if scalar @$x == 1; # below $BASE | ||||
279 | |||||
280 | # Start with the most significant element and work towards the least | ||||
281 | # significant element. Avoid multiplying "inf" (which happens if the number | ||||
282 | # overflows) with "0" (if there are zero elements in $x) since this gives | ||||
283 | # "nan" which propagates to the output. | ||||
284 | |||||
285 | my $num = 0; | ||||
286 | for (my $i = $#$x ; $i >= 0 ; --$i) { | ||||
287 | $num *= $BASE; | ||||
288 | $num += $x -> [$i]; | ||||
289 | } | ||||
290 | return $num; | ||||
291 | } | ||||
292 | |||||
293 | ############################################################################## | ||||
294 | # actual math code | ||||
295 | |||||
296 | sub _add | ||||
297 | { | ||||
298 | # (ref to int_num_array, ref to int_num_array) | ||||
299 | # routine to add two base 1eX numbers | ||||
300 | # stolen from Knuth Vol 2 Algorithm A pg 231 | ||||
301 | # there are separate routines to add and sub as per Knuth pg 233 | ||||
302 | # This routine modifies array x, but not y. | ||||
303 | |||||
304 | my ($c,$x,$y) = @_; | ||||
305 | |||||
306 | return $x if (@$y == 1) && $y->[0] == 0; # $x + 0 => $x | ||||
307 | if ((@$x == 1) && $x->[0] == 0) # 0 + $y => $y->copy | ||||
308 | { | ||||
309 | # twice as slow as $x = [ @$y ], but nec. to retain $x as ref :( | ||||
310 | @$x = @$y; return $x; | ||||
311 | } | ||||
312 | |||||
313 | # for each in Y, add Y to X and carry. If after that, something is left in | ||||
314 | # X, foreach in X add carry to X and then return X, carry | ||||
315 | # Trades one "$j++" for having to shift arrays | ||||
316 | my $i; my $car = 0; my $j = 0; | ||||
317 | for $i (@$y) | ||||
318 | { | ||||
319 | $x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0; | ||||
320 | $j++; | ||||
321 | } | ||||
322 | while ($car != 0) | ||||
323 | { | ||||
324 | $x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0; $j++; | ||||
325 | } | ||||
326 | $x; | ||||
327 | } | ||||
328 | |||||
329 | sub _inc | ||||
330 | { | ||||
331 | # (ref to int_num_array, ref to int_num_array) | ||||
332 | # Add 1 to $x, modify $x in place | ||||
333 | my ($c,$x) = @_; | ||||
334 | |||||
335 | for my $i (@$x) | ||||
336 | { | ||||
337 | return $x if (($i += 1) < $BASE); # early out | ||||
338 | $i = 0; # overflow, next | ||||
339 | } | ||||
340 | push @$x,1 if (($x->[-1] || 0) == 0); # last overflowed, so extend | ||||
341 | $x; | ||||
342 | } | ||||
343 | |||||
344 | sub _dec | ||||
345 | { | ||||
346 | # (ref to int_num_array, ref to int_num_array) | ||||
347 | # Sub 1 from $x, modify $x in place | ||||
348 | my ($c,$x) = @_; | ||||
349 | |||||
350 | my $MAX = $BASE-1; # since MAX_VAL based on BASE | ||||
351 | for my $i (@$x) | ||||
352 | { | ||||
353 | last if (($i -= 1) >= 0); # early out | ||||
354 | $i = $MAX; # underflow, next | ||||
355 | } | ||||
356 | pop @$x if $x->[-1] == 0 && @$x > 1; # last underflowed (but leave 0) | ||||
357 | $x; | ||||
358 | } | ||||
359 | |||||
360 | sub _sub | ||||
361 | { | ||||
362 | # (ref to int_num_array, ref to int_num_array, swap) | ||||
363 | # subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y | ||||
364 | # subtract Y from X by modifying x in place | ||||
365 | my ($c,$sx,$sy,$s) = @_; | ||||
366 | |||||
367 | my $car = 0; my $i; my $j = 0; | ||||
368 | if (!$s) | ||||
369 | { | ||||
370 | for $i (@$sx) | ||||
371 | { | ||||
372 | last unless defined $sy->[$j] || $car; | ||||
373 | $i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0); $j++; | ||||
374 | } | ||||
375 | # might leave leading zeros, so fix that | ||||
376 | return __strip_zeros($sx); | ||||
377 | } | ||||
378 | for $i (@$sx) | ||||
379 | { | ||||
380 | # we can't do an early out if $x is < than $y, since we | ||||
381 | # need to copy the high chunks from $y. Found by Bob Mathews. | ||||
382 | #last unless defined $sy->[$j] || $car; | ||||
383 | $sy->[$j] += $BASE | ||||
384 | if $car = (($sy->[$j] = $i-($sy->[$j]||0) - $car) < 0); | ||||
385 | $j++; | ||||
386 | } | ||||
387 | # might leave leading zeros, so fix that | ||||
388 | __strip_zeros($sy); | ||||
389 | } | ||||
390 | |||||
391 | sub _mul_use_mul | ||||
392 | { | ||||
393 | # (ref to int_num_array, ref to int_num_array) | ||||
394 | # multiply two numbers in internal representation | ||||
395 | # modifies first arg, second need not be different from first | ||||
396 | my ($c,$xv,$yv) = @_; | ||||
397 | |||||
398 | if (@$yv == 1) | ||||
399 | { | ||||
400 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
401 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
402 | if (@$xv == 1) | ||||
403 | { | ||||
404 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
405 | { | ||||
406 | $xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $BASE; | ||||
407 | }; | ||||
408 | return $xv; | ||||
409 | } | ||||
410 | # $x * 0 => 0 | ||||
411 | if ($yv->[0] == 0) | ||||
412 | { | ||||
413 | @$xv = (0); | ||||
414 | return $xv; | ||||
415 | } | ||||
416 | # multiply a large number a by a single element one, so speed up | ||||
417 | my $y = $yv->[0]; my $car = 0; | ||||
418 | foreach my $i (@$xv) | ||||
419 | { | ||||
420 | $i = $i * $y + $car; $car = int($i * $RBASE); $i -= $car * $BASE; | ||||
421 | } | ||||
422 | push @$xv, $car if $car != 0; | ||||
423 | return $xv; | ||||
424 | } | ||||
425 | # shortcut for result $x == 0 => result = 0 | ||||
426 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
427 | |||||
428 | # since multiplying $x with $x fails, make copy in this case | ||||
429 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
430 | |||||
431 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
432 | |||||
433 | for $xi (@$xv) | ||||
434 | { | ||||
435 | $car = 0; $cty = 0; | ||||
436 | |||||
437 | # slow variant | ||||
438 | # for $yi (@$yv) | ||||
439 | # { | ||||
440 | # $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
441 | # $prod[$cty++] = | ||||
442 | # $prod - ($car = int($prod * RBASE)) * $BASE; # see USE_MUL | ||||
443 | # } | ||||
444 | # $prod[$cty] += $car if $car; # need really to check for 0? | ||||
445 | # $xi = shift @prod; | ||||
446 | |||||
447 | # faster variant | ||||
448 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
449 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
450 | for $yi (@$yv) | ||||
451 | { | ||||
452 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
453 | ## this is actually a tad slower | ||||
454 | ## $prod = $prod[$cty]; $prod += ($car + $xi * $yi); # no ||0 here | ||||
455 | $prod[$cty++] = | ||||
456 | $prod - ($car = int($prod * $RBASE)) * $BASE; # see USE_MUL | ||||
457 | } | ||||
458 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
459 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
460 | } | ||||
461 | push @$xv, @prod; | ||||
462 | # can't have leading zeros | ||||
463 | # __strip_zeros($xv); | ||||
464 | $xv; | ||||
465 | } | ||||
466 | |||||
467 | sub _mul_use_div_64 | ||||
468 | { | ||||
469 | # (ref to int_num_array, ref to int_num_array) | ||||
470 | # multiply two numbers in internal representation | ||||
471 | # modifies first arg, second need not be different from first | ||||
472 | # works for 64 bit integer with "use integer" | ||||
473 | my ($c,$xv,$yv) = @_; | ||||
474 | |||||
475 | 2 | 1.06ms | 2 | 14µs | # spent 13µs (11+2) within Math::BigInt::Calc::BEGIN@475 which was called:
# once (11µs+2µs) by Math::BigInt::BEGIN@1 at line 475 # spent 13µs making 1 call to Math::BigInt::Calc::BEGIN@475
# spent 2µs making 1 call to integer::import |
476 | if (@$yv == 1) | ||||
477 | { | ||||
478 | # shortcut for two small numbers, also handles $x == 0 | ||||
479 | if (@$xv == 1) | ||||
480 | { | ||||
481 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
482 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
483 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
484 | { | ||||
485 | $xv->[0] = | ||||
486 | $xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE; | ||||
487 | }; | ||||
488 | return $xv; | ||||
489 | } | ||||
490 | # $x * 0 => 0 | ||||
491 | if ($yv->[0] == 0) | ||||
492 | { | ||||
493 | @$xv = (0); | ||||
494 | return $xv; | ||||
495 | } | ||||
496 | # multiply a large number a by a single element one, so speed up | ||||
497 | my $y = $yv->[0]; my $car = 0; | ||||
498 | foreach my $i (@$xv) | ||||
499 | { | ||||
500 | #$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE; | ||||
501 | $i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE; | ||||
502 | } | ||||
503 | push @$xv, $car if $car != 0; | ||||
504 | return $xv; | ||||
505 | } | ||||
506 | # shortcut for result $x == 0 => result = 0 | ||||
507 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
508 | |||||
509 | # since multiplying $x with $x fails, make copy in this case | ||||
510 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
511 | |||||
512 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
513 | for $xi (@$xv) | ||||
514 | { | ||||
515 | $car = 0; $cty = 0; | ||||
516 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
517 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
518 | for $yi (@$yv) | ||||
519 | { | ||||
520 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
521 | $prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE; | ||||
522 | } | ||||
523 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
524 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
525 | } | ||||
526 | push @$xv, @prod; | ||||
527 | $xv; | ||||
528 | } | ||||
529 | |||||
530 | sub _mul_use_div | ||||
531 | { | ||||
532 | # (ref to int_num_array, ref to int_num_array) | ||||
533 | # multiply two numbers in internal representation | ||||
534 | # modifies first arg, second need not be different from first | ||||
535 | my ($c,$xv,$yv) = @_; | ||||
536 | |||||
537 | if (@$yv == 1) | ||||
538 | { | ||||
539 | # shortcut for two small numbers, also handles $x == 0 | ||||
540 | if (@$xv == 1) | ||||
541 | { | ||||
542 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
543 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
544 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
545 | { | ||||
546 | $xv->[0] = | ||||
547 | $xv->[0] - ($xv->[1] = int($xv->[0] / $BASE)) * $BASE; | ||||
548 | }; | ||||
549 | return $xv; | ||||
550 | } | ||||
551 | # $x * 0 => 0 | ||||
552 | if ($yv->[0] == 0) | ||||
553 | { | ||||
554 | @$xv = (0); | ||||
555 | return $xv; | ||||
556 | } | ||||
557 | # multiply a large number a by a single element one, so speed up | ||||
558 | my $y = $yv->[0]; my $car = 0; | ||||
559 | foreach my $i (@$xv) | ||||
560 | { | ||||
561 | $i = $i * $y + $car; $car = int($i / $BASE); $i -= $car * $BASE; | ||||
562 | # This (together with use integer;) does not work on 32-bit Perls | ||||
563 | #$i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE; | ||||
564 | } | ||||
565 | push @$xv, $car if $car != 0; | ||||
566 | return $xv; | ||||
567 | } | ||||
568 | # shortcut for result $x == 0 => result = 0 | ||||
569 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
570 | |||||
571 | # since multiplying $x with $x fails, make copy in this case | ||||
572 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
573 | |||||
574 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
575 | for $xi (@$xv) | ||||
576 | { | ||||
577 | $car = 0; $cty = 0; | ||||
578 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
579 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
580 | for $yi (@$yv) | ||||
581 | { | ||||
582 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
583 | $prod[$cty++] = $prod - ($car = int($prod / $BASE)) * $BASE; | ||||
584 | } | ||||
585 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
586 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
587 | } | ||||
588 | push @$xv, @prod; | ||||
589 | # can't have leading zeros | ||||
590 | # __strip_zeros($xv); | ||||
591 | $xv; | ||||
592 | } | ||||
593 | |||||
594 | sub _div_use_mul | ||||
595 | { | ||||
596 | # ref to array, ref to array, modify first array and return remainder if | ||||
597 | # in list context | ||||
598 | |||||
599 | # see comments in _div_use_div() for more explanations | ||||
600 | |||||
601 | my ($c,$x,$yorg) = @_; | ||||
602 | |||||
603 | # the general div algorithm here is about O(N*N) and thus quite slow, so | ||||
604 | # we first check for some special cases and use shortcuts to handle them. | ||||
605 | |||||
606 | # This works, because we store the numbers in a chunked format where each | ||||
607 | # element contains 5..7 digits (depending on system). | ||||
608 | |||||
609 | # if both numbers have only one element: | ||||
610 | if (@$x == 1 && @$yorg == 1) | ||||
611 | { | ||||
612 | # shortcut, $yorg and $x are two small numbers | ||||
613 | if (wantarray) | ||||
614 | { | ||||
615 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
616 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
617 | return ($x,$r); | ||||
618 | } | ||||
619 | else | ||||
620 | { | ||||
621 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
622 | return $x; | ||||
623 | } | ||||
624 | } | ||||
625 | |||||
626 | # if x has more than one, but y has only one element: | ||||
627 | if (@$yorg == 1) | ||||
628 | { | ||||
629 | my $rem; | ||||
630 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
631 | |||||
632 | # shortcut, $y is < $BASE | ||||
633 | my $j = scalar @$x; my $r = 0; | ||||
634 | my $y = $yorg->[0]; my $b; | ||||
635 | while ($j-- > 0) | ||||
636 | { | ||||
637 | $b = $r * $BASE + $x->[$j]; | ||||
638 | $x->[$j] = int($b/$y); | ||||
639 | $r = $b % $y; | ||||
640 | } | ||||
641 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
642 | return ($x,$rem) if wantarray; | ||||
643 | return $x; | ||||
644 | } | ||||
645 | |||||
646 | # now x and y have more than one element | ||||
647 | |||||
648 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
649 | if (@$yorg > @$x) | ||||
650 | { | ||||
651 | my $rem; | ||||
652 | $rem = [@$x] if wantarray; # make copy | ||||
653 | splice (@$x,1); # keep ref to original array | ||||
654 | $x->[0] = 0; # set to 0 | ||||
655 | return ($x,$rem) if wantarray; # including remainder? | ||||
656 | return $x; # only x, which is [0] now | ||||
657 | } | ||||
658 | # check whether the numbers have the same number of elements, in that case | ||||
659 | # the result will fit into one element and can be computed efficiently | ||||
660 | if (@$yorg == @$x) | ||||
661 | { | ||||
662 | my $rem; | ||||
663 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
664 | # the one from $x), the result will also be 0: | ||||
665 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
666 | { | ||||
667 | $rem = [@$x] if wantarray; # make copy | ||||
668 | splice (@$x,1); # keep ref to org array | ||||
669 | $x->[0] = 0; # set to 0 | ||||
670 | return ($x,$rem) if wantarray; # including remainder? | ||||
671 | return $x; | ||||
672 | } | ||||
673 | # now calculate $x / $yorg | ||||
674 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
675 | { | ||||
676 | # same length, so make full compare | ||||
677 | |||||
678 | my $a = 0; my $j = scalar @$x - 1; | ||||
679 | # manual way (abort if unequal, good for early ne) | ||||
680 | while ($j >= 0) | ||||
681 | { | ||||
682 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
683 | } | ||||
684 | # $a contains the result of the compare between X and Y | ||||
685 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
686 | if ($a <= 0) | ||||
687 | { | ||||
688 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
689 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
690 | splice(@$x,1); # keep single element | ||||
691 | $x->[0] = 0; # if $a < 0 | ||||
692 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
693 | return ($x,$rem) if wantarray; | ||||
694 | return $x; | ||||
695 | } | ||||
696 | # $x >= $y, so proceed normally | ||||
697 | } | ||||
698 | } | ||||
699 | |||||
700 | # all other cases: | ||||
701 | |||||
702 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
703 | |||||
704 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
705 | |||||
706 | $car = $bar = $prd = 0; | ||||
707 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
708 | { | ||||
709 | for $xi (@$x) | ||||
710 | { | ||||
711 | $xi = $xi * $dd + $car; | ||||
712 | $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL | ||||
713 | } | ||||
714 | push(@$x, $car); $car = 0; | ||||
715 | for $yi (@$y) | ||||
716 | { | ||||
717 | $yi = $yi * $dd + $car; | ||||
718 | $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL | ||||
719 | } | ||||
720 | } | ||||
721 | else | ||||
722 | { | ||||
723 | push(@$x, 0); | ||||
724 | } | ||||
725 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
726 | $v2 = 0 unless $v2; | ||||
727 | while ($#$x > $#$y) | ||||
728 | { | ||||
729 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
730 | $u2 = 0 unless $u2; | ||||
731 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
732 | # if $v1 == 0; | ||||
733 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
734 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
735 | if ($q) | ||||
736 | { | ||||
737 | ($car, $bar) = (0,0); | ||||
738 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
739 | { | ||||
740 | $prd = $q * $y->[$yi] + $car; | ||||
741 | $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL | ||||
742 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
743 | } | ||||
744 | if ($x->[-1] < $car + $bar) | ||||
745 | { | ||||
746 | $car = 0; --$q; | ||||
747 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
748 | { | ||||
749 | $x->[$xi] -= $BASE | ||||
750 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
751 | } | ||||
752 | } | ||||
753 | } | ||||
754 | pop(@$x); | ||||
755 | unshift(@q, $q); | ||||
756 | } | ||||
757 | if (wantarray) | ||||
758 | { | ||||
759 | @d = (); | ||||
760 | if ($dd != 1) | ||||
761 | { | ||||
762 | $car = 0; | ||||
763 | for $xi (reverse @$x) | ||||
764 | { | ||||
765 | $prd = $car * $BASE + $xi; | ||||
766 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL | ||||
767 | unshift(@d, $tmp); | ||||
768 | } | ||||
769 | } | ||||
770 | else | ||||
771 | { | ||||
772 | @d = @$x; | ||||
773 | } | ||||
774 | @$x = @q; | ||||
775 | my $d = \@d; | ||||
776 | __strip_zeros($x); | ||||
777 | __strip_zeros($d); | ||||
778 | return ($x,$d); | ||||
779 | } | ||||
780 | @$x = @q; | ||||
781 | __strip_zeros($x); | ||||
782 | $x; | ||||
783 | } | ||||
784 | |||||
785 | sub _div_use_div_64 | ||||
786 | { | ||||
787 | # ref to array, ref to array, modify first array and return remainder if | ||||
788 | # in list context | ||||
789 | # This version works on 64 bit integers | ||||
790 | my ($c,$x,$yorg) = @_; | ||||
791 | |||||
792 | 2 | 3.79ms | 2 | 11µs | # spent 10µs (8+2) within Math::BigInt::Calc::BEGIN@792 which was called:
# once (8µs+2µs) by Math::BigInt::BEGIN@1 at line 792 # spent 10µs making 1 call to Math::BigInt::Calc::BEGIN@792
# spent 2µs making 1 call to integer::import |
793 | # the general div algorithm here is about O(N*N) and thus quite slow, so | ||||
794 | # we first check for some special cases and use shortcuts to handle them. | ||||
795 | |||||
796 | # This works, because we store the numbers in a chunked format where each | ||||
797 | # element contains 5..7 digits (depending on system). | ||||
798 | |||||
799 | # if both numbers have only one element: | ||||
800 | if (@$x == 1 && @$yorg == 1) | ||||
801 | { | ||||
802 | # shortcut, $yorg and $x are two small numbers | ||||
803 | if (wantarray) | ||||
804 | { | ||||
805 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
806 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
807 | return ($x,$r); | ||||
808 | } | ||||
809 | else | ||||
810 | { | ||||
811 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
812 | return $x; | ||||
813 | } | ||||
814 | } | ||||
815 | # if x has more than one, but y has only one element: | ||||
816 | if (@$yorg == 1) | ||||
817 | { | ||||
818 | my $rem; | ||||
819 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
820 | |||||
821 | # shortcut, $y is < $BASE | ||||
822 | my $j = scalar @$x; my $r = 0; | ||||
823 | my $y = $yorg->[0]; my $b; | ||||
824 | while ($j-- > 0) | ||||
825 | { | ||||
826 | $b = $r * $BASE + $x->[$j]; | ||||
827 | $x->[$j] = int($b/$y); | ||||
828 | $r = $b % $y; | ||||
829 | } | ||||
830 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
831 | return ($x,$rem) if wantarray; | ||||
832 | return $x; | ||||
833 | } | ||||
834 | # now x and y have more than one element | ||||
835 | |||||
836 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
837 | if (@$yorg > @$x) | ||||
838 | { | ||||
839 | my $rem; | ||||
840 | $rem = [@$x] if wantarray; # make copy | ||||
841 | splice (@$x,1); # keep ref to original array | ||||
842 | $x->[0] = 0; # set to 0 | ||||
843 | return ($x,$rem) if wantarray; # including remainder? | ||||
844 | return $x; # only x, which is [0] now | ||||
845 | } | ||||
846 | # check whether the numbers have the same number of elements, in that case | ||||
847 | # the result will fit into one element and can be computed efficiently | ||||
848 | if (@$yorg == @$x) | ||||
849 | { | ||||
850 | my $rem; | ||||
851 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
852 | # the one from $x), the result will also be 0: | ||||
853 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
854 | { | ||||
855 | $rem = [@$x] if wantarray; # make copy | ||||
856 | splice (@$x,1); # keep ref to org array | ||||
857 | $x->[0] = 0; # set to 0 | ||||
858 | return ($x,$rem) if wantarray; # including remainder? | ||||
859 | return $x; | ||||
860 | } | ||||
861 | # now calculate $x / $yorg | ||||
862 | |||||
863 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
864 | { | ||||
865 | # same length, so make full compare | ||||
866 | |||||
867 | my $a = 0; my $j = scalar @$x - 1; | ||||
868 | # manual way (abort if unequal, good for early ne) | ||||
869 | while ($j >= 0) | ||||
870 | { | ||||
871 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
872 | } | ||||
873 | # $a contains the result of the compare between X and Y | ||||
874 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
875 | if ($a <= 0) | ||||
876 | { | ||||
877 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
878 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
879 | splice(@$x,1); # keep single element | ||||
880 | $x->[0] = 0; # if $a < 0 | ||||
881 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
882 | return ($x,$rem) if wantarray; # including remainder? | ||||
883 | return $x; | ||||
884 | } | ||||
885 | # $x >= $y, so proceed normally | ||||
886 | |||||
887 | } | ||||
888 | } | ||||
889 | |||||
890 | # all other cases: | ||||
891 | |||||
892 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
893 | |||||
894 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
895 | |||||
896 | $car = $bar = $prd = 0; | ||||
897 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
898 | { | ||||
899 | for $xi (@$x) | ||||
900 | { | ||||
901 | $xi = $xi * $dd + $car; | ||||
902 | $xi -= ($car = int($xi / $BASE)) * $BASE; | ||||
903 | } | ||||
904 | push(@$x, $car); $car = 0; | ||||
905 | for $yi (@$y) | ||||
906 | { | ||||
907 | $yi = $yi * $dd + $car; | ||||
908 | $yi -= ($car = int($yi / $BASE)) * $BASE; | ||||
909 | } | ||||
910 | } | ||||
911 | else | ||||
912 | { | ||||
913 | push(@$x, 0); | ||||
914 | } | ||||
915 | |||||
916 | # @q will accumulate the final result, $q contains the current computed | ||||
917 | # part of the final result | ||||
918 | |||||
919 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
920 | $v2 = 0 unless $v2; | ||||
921 | while ($#$x > $#$y) | ||||
922 | { | ||||
923 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
924 | $u2 = 0 unless $u2; | ||||
925 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
926 | # if $v1 == 0; | ||||
927 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
928 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
929 | if ($q) | ||||
930 | { | ||||
931 | ($car, $bar) = (0,0); | ||||
932 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
933 | { | ||||
934 | $prd = $q * $y->[$yi] + $car; | ||||
935 | $prd -= ($car = int($prd / $BASE)) * $BASE; | ||||
936 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
937 | } | ||||
938 | if ($x->[-1] < $car + $bar) | ||||
939 | { | ||||
940 | $car = 0; --$q; | ||||
941 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
942 | { | ||||
943 | $x->[$xi] -= $BASE | ||||
944 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
945 | } | ||||
946 | } | ||||
947 | } | ||||
948 | pop(@$x); unshift(@q, $q); | ||||
949 | } | ||||
950 | if (wantarray) | ||||
951 | { | ||||
952 | @d = (); | ||||
953 | if ($dd != 1) | ||||
954 | { | ||||
955 | $car = 0; | ||||
956 | for $xi (reverse @$x) | ||||
957 | { | ||||
958 | $prd = $car * $BASE + $xi; | ||||
959 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; | ||||
960 | unshift(@d, $tmp); | ||||
961 | } | ||||
962 | } | ||||
963 | else | ||||
964 | { | ||||
965 | @d = @$x; | ||||
966 | } | ||||
967 | @$x = @q; | ||||
968 | my $d = \@d; | ||||
969 | __strip_zeros($x); | ||||
970 | __strip_zeros($d); | ||||
971 | return ($x,$d); | ||||
972 | } | ||||
973 | @$x = @q; | ||||
974 | __strip_zeros($x); | ||||
975 | $x; | ||||
976 | } | ||||
977 | |||||
978 | sub _div_use_div | ||||
979 | { | ||||
980 | # ref to array, ref to array, modify first array and return remainder if | ||||
981 | # in list context | ||||
982 | my ($c,$x,$yorg) = @_; | ||||
983 | |||||
984 | # the general div algorithm here is about O(N*N) and thus quite slow, so | ||||
985 | # we first check for some special cases and use shortcuts to handle them. | ||||
986 | |||||
987 | # This works, because we store the numbers in a chunked format where each | ||||
988 | # element contains 5..7 digits (depending on system). | ||||
989 | |||||
990 | # if both numbers have only one element: | ||||
991 | if (@$x == 1 && @$yorg == 1) | ||||
992 | { | ||||
993 | # shortcut, $yorg and $x are two small numbers | ||||
994 | if (wantarray) | ||||
995 | { | ||||
996 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
997 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
998 | return ($x,$r); | ||||
999 | } | ||||
1000 | else | ||||
1001 | { | ||||
1002 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
1003 | return $x; | ||||
1004 | } | ||||
1005 | } | ||||
1006 | # if x has more than one, but y has only one element: | ||||
1007 | if (@$yorg == 1) | ||||
1008 | { | ||||
1009 | my $rem; | ||||
1010 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
1011 | |||||
1012 | # shortcut, $y is < $BASE | ||||
1013 | my $j = scalar @$x; my $r = 0; | ||||
1014 | my $y = $yorg->[0]; my $b; | ||||
1015 | while ($j-- > 0) | ||||
1016 | { | ||||
1017 | $b = $r * $BASE + $x->[$j]; | ||||
1018 | $x->[$j] = int($b/$y); | ||||
1019 | $r = $b % $y; | ||||
1020 | } | ||||
1021 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
1022 | return ($x,$rem) if wantarray; | ||||
1023 | return $x; | ||||
1024 | } | ||||
1025 | # now x and y have more than one element | ||||
1026 | |||||
1027 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
1028 | if (@$yorg > @$x) | ||||
1029 | { | ||||
1030 | my $rem; | ||||
1031 | $rem = [@$x] if wantarray; # make copy | ||||
1032 | splice (@$x,1); # keep ref to original array | ||||
1033 | $x->[0] = 0; # set to 0 | ||||
1034 | return ($x,$rem) if wantarray; # including remainder? | ||||
1035 | return $x; # only x, which is [0] now | ||||
1036 | } | ||||
1037 | # check whether the numbers have the same number of elements, in that case | ||||
1038 | # the result will fit into one element and can be computed efficiently | ||||
1039 | if (@$yorg == @$x) | ||||
1040 | { | ||||
1041 | my $rem; | ||||
1042 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
1043 | # the one from $x), the result will also be 0: | ||||
1044 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
1045 | { | ||||
1046 | $rem = [@$x] if wantarray; # make copy | ||||
1047 | splice (@$x,1); # keep ref to org array | ||||
1048 | $x->[0] = 0; # set to 0 | ||||
1049 | return ($x,$rem) if wantarray; # including remainder? | ||||
1050 | return $x; | ||||
1051 | } | ||||
1052 | # now calculate $x / $yorg | ||||
1053 | |||||
1054 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
1055 | { | ||||
1056 | # same length, so make full compare | ||||
1057 | |||||
1058 | my $a = 0; my $j = scalar @$x - 1; | ||||
1059 | # manual way (abort if unequal, good for early ne) | ||||
1060 | while ($j >= 0) | ||||
1061 | { | ||||
1062 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
1063 | } | ||||
1064 | # $a contains the result of the compare between X and Y | ||||
1065 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
1066 | if ($a <= 0) | ||||
1067 | { | ||||
1068 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
1069 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
1070 | splice(@$x,1); # keep single element | ||||
1071 | $x->[0] = 0; # if $a < 0 | ||||
1072 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
1073 | return ($x,$rem) if wantarray; # including remainder? | ||||
1074 | return $x; | ||||
1075 | } | ||||
1076 | # $x >= $y, so proceed normally | ||||
1077 | |||||
1078 | } | ||||
1079 | } | ||||
1080 | |||||
1081 | # all other cases: | ||||
1082 | |||||
1083 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
1084 | |||||
1085 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
1086 | |||||
1087 | $car = $bar = $prd = 0; | ||||
1088 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
1089 | { | ||||
1090 | for $xi (@$x) | ||||
1091 | { | ||||
1092 | $xi = $xi * $dd + $car; | ||||
1093 | $xi -= ($car = int($xi / $BASE)) * $BASE; | ||||
1094 | } | ||||
1095 | push(@$x, $car); $car = 0; | ||||
1096 | for $yi (@$y) | ||||
1097 | { | ||||
1098 | $yi = $yi * $dd + $car; | ||||
1099 | $yi -= ($car = int($yi / $BASE)) * $BASE; | ||||
1100 | } | ||||
1101 | } | ||||
1102 | else | ||||
1103 | { | ||||
1104 | push(@$x, 0); | ||||
1105 | } | ||||
1106 | |||||
1107 | # @q will accumulate the final result, $q contains the current computed | ||||
1108 | # part of the final result | ||||
1109 | |||||
1110 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
1111 | $v2 = 0 unless $v2; | ||||
1112 | while ($#$x > $#$y) | ||||
1113 | { | ||||
1114 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
1115 | $u2 = 0 unless $u2; | ||||
1116 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
1117 | # if $v1 == 0; | ||||
1118 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
1119 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
1120 | if ($q) | ||||
1121 | { | ||||
1122 | ($car, $bar) = (0,0); | ||||
1123 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
1124 | { | ||||
1125 | $prd = $q * $y->[$yi] + $car; | ||||
1126 | $prd -= ($car = int($prd / $BASE)) * $BASE; | ||||
1127 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
1128 | } | ||||
1129 | if ($x->[-1] < $car + $bar) | ||||
1130 | { | ||||
1131 | $car = 0; --$q; | ||||
1132 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
1133 | { | ||||
1134 | $x->[$xi] -= $BASE | ||||
1135 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
1136 | } | ||||
1137 | } | ||||
1138 | } | ||||
1139 | pop(@$x); unshift(@q, $q); | ||||
1140 | } | ||||
1141 | if (wantarray) | ||||
1142 | { | ||||
1143 | @d = (); | ||||
1144 | if ($dd != 1) | ||||
1145 | { | ||||
1146 | $car = 0; | ||||
1147 | for $xi (reverse @$x) | ||||
1148 | { | ||||
1149 | $prd = $car * $BASE + $xi; | ||||
1150 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; | ||||
1151 | unshift(@d, $tmp); | ||||
1152 | } | ||||
1153 | } | ||||
1154 | else | ||||
1155 | { | ||||
1156 | @d = @$x; | ||||
1157 | } | ||||
1158 | @$x = @q; | ||||
1159 | my $d = \@d; | ||||
1160 | __strip_zeros($x); | ||||
1161 | __strip_zeros($d); | ||||
1162 | return ($x,$d); | ||||
1163 | } | ||||
1164 | @$x = @q; | ||||
1165 | __strip_zeros($x); | ||||
1166 | $x; | ||||
1167 | } | ||||
1168 | |||||
1169 | ############################################################################## | ||||
1170 | # testing | ||||
1171 | |||||
1172 | sub _acmp | ||||
1173 | { | ||||
1174 | # internal absolute post-normalized compare (ignore signs) | ||||
1175 | # ref to array, ref to array, return <0, 0, >0 | ||||
1176 | # arrays must have at least one entry; this is not checked for | ||||
1177 | my ($c,$cx,$cy) = @_; | ||||
1178 | |||||
1179 | # shortcut for short numbers | ||||
1180 | return (($cx->[0] <=> $cy->[0]) <=> 0) | ||||
1181 | if scalar @$cx == scalar @$cy && scalar @$cx == 1; | ||||
1182 | |||||
1183 | # fast comp based on number of array elements (aka pseudo-length) | ||||
1184 | my $lxy = (scalar @$cx - scalar @$cy) | ||||
1185 | # or length of first element if same number of elements (aka difference 0) | ||||
1186 | || | ||||
1187 | # need int() here because sometimes the last element is '00018' vs '18' | ||||
1188 | (length(int($cx->[-1])) - length(int($cy->[-1]))); | ||||
1189 | return -1 if $lxy < 0; # already differs, ret | ||||
1190 | return 1 if $lxy > 0; # ditto | ||||
1191 | |||||
1192 | # manual way (abort if unequal, good for early ne) | ||||
1193 | my $a; my $j = scalar @$cx; | ||||
1194 | while (--$j >= 0) | ||||
1195 | { | ||||
1196 | last if ($a = $cx->[$j] - $cy->[$j]); | ||||
1197 | } | ||||
1198 | $a <=> 0; | ||||
1199 | } | ||||
1200 | |||||
1201 | sub _len | ||||
1202 | { | ||||
1203 | # compute number of digits in base 10 | ||||
1204 | |||||
1205 | # int() because add/sub sometimes leaves strings (like '00005') instead of | ||||
1206 | # '5' in this place, thus causing length() to report wrong length | ||||
1207 | my $cx = $_[1]; | ||||
1208 | |||||
1209 | (@$cx-1)*$BASE_LEN+length(int($cx->[-1])); | ||||
1210 | } | ||||
1211 | |||||
1212 | sub _digit | ||||
1213 | { | ||||
1214 | # Return the nth digit. Zero is rightmost, so _digit(123,0) gives 3. | ||||
1215 | # Negative values count from the left, so _digit(123, -1) gives 1. | ||||
1216 | my ($c,$x,$n) = @_; | ||||
1217 | |||||
1218 | my $len = _len('',$x); | ||||
1219 | |||||
1220 | $n += $len if $n < 0; # -1 last, -2 second-to-last | ||||
1221 | return "0" if $n < 0 || $n >= $len; # return 0 for digits out of range | ||||
1222 | |||||
1223 | my $elem = int($n / $BASE_LEN); # which array element | ||||
1224 | my $digit = $n % $BASE_LEN; # which digit in this element | ||||
1225 | substr("$x->[$elem]", -$digit-1, 1); | ||||
1226 | } | ||||
1227 | |||||
1228 | sub _zeros | ||||
1229 | { | ||||
1230 | # return amount of trailing zeros in decimal | ||||
1231 | # check each array elem in _m for having 0 at end as long as elem == 0 | ||||
1232 | # Upon finding a elem != 0, stop | ||||
1233 | my $x = $_[1]; | ||||
1234 | |||||
1235 | return 0 if scalar @$x == 1 && $x->[0] == 0; | ||||
1236 | |||||
1237 | my $zeros = 0; my $elem; | ||||
1238 | foreach my $e (@$x) | ||||
1239 | { | ||||
1240 | if ($e != 0) | ||||
1241 | { | ||||
1242 | $elem = "$e"; # preserve x | ||||
1243 | $elem =~ s/.*?(0*$)/$1/; # strip anything not zero | ||||
1244 | $zeros *= $BASE_LEN; # elems * 5 | ||||
1245 | $zeros += length($elem); # count trailing zeros | ||||
1246 | last; # early out | ||||
1247 | } | ||||
1248 | $zeros ++; # real else branch: 50% slower! | ||||
1249 | } | ||||
1250 | $zeros; | ||||
1251 | } | ||||
1252 | |||||
1253 | ############################################################################## | ||||
1254 | # _is_* routines | ||||
1255 | |||||
1256 | sub _is_zero | ||||
1257 | { | ||||
1258 | # return true if arg is zero | ||||
1259 | (((scalar @{$_[1]} == 1) && ($_[1]->[0] == 0))) <=> 0; | ||||
1260 | } | ||||
1261 | |||||
1262 | sub _is_even | ||||
1263 | { | ||||
1264 | # return true if arg is even | ||||
1265 | (!($_[1]->[0] & 1)) <=> 0; | ||||
1266 | } | ||||
1267 | |||||
1268 | sub _is_odd | ||||
1269 | { | ||||
1270 | # return true if arg is odd | ||||
1271 | (($_[1]->[0] & 1)) <=> 0; | ||||
1272 | } | ||||
1273 | |||||
1274 | sub _is_one | ||||
1275 | { | ||||
1276 | # return true if arg is one | ||||
1277 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 1) <=> 0; | ||||
1278 | } | ||||
1279 | |||||
1280 | sub _is_two | ||||
1281 | { | ||||
1282 | # return true if arg is two | ||||
1283 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 2) <=> 0; | ||||
1284 | } | ||||
1285 | |||||
1286 | sub _is_ten | ||||
1287 | { | ||||
1288 | # return true if arg is ten | ||||
1289 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 10) <=> 0; | ||||
1290 | } | ||||
1291 | |||||
1292 | sub __strip_zeros | ||||
1293 | { | ||||
1294 | # internal normalization function that strips leading zeros from the array | ||||
1295 | # args: ref to array | ||||
1296 | my $s = shift; | ||||
1297 | |||||
1298 | my $cnt = scalar @$s; # get count of parts | ||||
1299 | my $i = $cnt-1; | ||||
1300 | push @$s,0 if $i < 0; # div might return empty results, so fix it | ||||
1301 | |||||
1302 | return $s if @$s == 1; # early out | ||||
1303 | |||||
1304 | #print "strip: cnt $cnt i $i\n"; | ||||
1305 | # '0', '3', '4', '0', '0', | ||||
1306 | # 0 1 2 3 4 | ||||
1307 | # cnt = 5, i = 4 | ||||
1308 | # i = 4 | ||||
1309 | # i = 3 | ||||
1310 | # => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos) | ||||
1311 | # >= 1: skip first part (this can be zero) | ||||
1312 | while ($i > 0) { last if $s->[$i] != 0; $i--; } | ||||
1313 | $i++; splice @$s,$i if ($i < $cnt); # $i cant be 0 | ||||
1314 | $s; | ||||
1315 | } | ||||
1316 | |||||
1317 | ############################################################################### | ||||
1318 | # check routine to test internal state for corruptions | ||||
1319 | |||||
1320 | sub _check | ||||
1321 | { | ||||
1322 | # used by the test suite | ||||
1323 | my $x = $_[1]; | ||||
1324 | |||||
1325 | return "$x is not a reference" if !ref($x); | ||||
1326 | |||||
1327 | # are all parts are valid? | ||||
1328 | my $i = 0; my $j = scalar @$x; my ($e,$try); | ||||
1329 | while ($i < $j) | ||||
1330 | { | ||||
1331 | $e = $x->[$i]; $e = 'undef' unless defined $e; | ||||
1332 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e)"; | ||||
1333 | last if $e !~ /^[+]?[0-9]+$/; | ||||
1334 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (stringify)"; | ||||
1335 | last if "$e" !~ /^[+]?[0-9]+$/; | ||||
1336 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (cat-stringify)"; | ||||
1337 | last if '' . "$e" !~ /^[+]?[0-9]+$/; | ||||
1338 | $try = ' < 0 || >= $BASE; '."($x, $e)"; | ||||
1339 | last if $e <0 || $e >= $BASE; | ||||
1340 | # this test is disabled, since new/bnorm and certain ops (like early out | ||||
1341 | # in add/sub) are allowed/expected to leave '00000' in some elements | ||||
1342 | #$try = '=~ /^00+/; '."($x, $e)"; | ||||
1343 | #last if $e =~ /^00+/; | ||||
1344 | $i++; | ||||
1345 | } | ||||
1346 | return "Illegal part '$e' at pos $i (tested: $try)" if $i < $j; | ||||
1347 | 0; | ||||
1348 | } | ||||
1349 | |||||
1350 | |||||
1351 | ############################################################################### | ||||
1352 | |||||
1353 | sub _mod | ||||
1354 | { | ||||
1355 | # if possible, use mod shortcut | ||||
1356 | my ($c,$x,$yo) = @_; | ||||
1357 | |||||
1358 | # slow way since $y too big | ||||
1359 | if (scalar @$yo > 1) | ||||
1360 | { | ||||
1361 | my ($xo,$rem) = _div($c,$x,$yo); | ||||
1362 | @$x = @$rem; | ||||
1363 | return $x; | ||||
1364 | } | ||||
1365 | |||||
1366 | my $y = $yo->[0]; | ||||
1367 | |||||
1368 | # if both are single element arrays | ||||
1369 | if (scalar @$x == 1) | ||||
1370 | { | ||||
1371 | $x->[0] %= $y; | ||||
1372 | return $x; | ||||
1373 | } | ||||
1374 | |||||
1375 | # if @$x has more than one element, but @$y is a single element | ||||
1376 | my $b = $BASE % $y; | ||||
1377 | if ($b == 0) | ||||
1378 | { | ||||
1379 | # when BASE % Y == 0 then (B * BASE) % Y == 0 | ||||
1380 | # (B * BASE) % $y + A % Y => A % Y | ||||
1381 | # so need to consider only last element: O(1) | ||||
1382 | $x->[0] %= $y; | ||||
1383 | } | ||||
1384 | elsif ($b == 1) | ||||
1385 | { | ||||
1386 | # else need to go through all elements in @$x: O(N), but loop is a bit | ||||
1387 | # simplified | ||||
1388 | my $r = 0; | ||||
1389 | foreach (@$x) | ||||
1390 | { | ||||
1391 | $r = ($r + $_) % $y; # not much faster, but heh... | ||||
1392 | #$r += $_ % $y; $r %= $y; | ||||
1393 | } | ||||
1394 | $r = 0 if $r == $y; | ||||
1395 | $x->[0] = $r; | ||||
1396 | } | ||||
1397 | else | ||||
1398 | { | ||||
1399 | # else need to go through all elements in @$x: O(N) | ||||
1400 | my $r = 0; | ||||
1401 | my $bm = 1; | ||||
1402 | foreach (@$x) | ||||
1403 | { | ||||
1404 | $r = ($_ * $bm + $r) % $y; | ||||
1405 | $bm = ($bm * $b) % $y; | ||||
1406 | |||||
1407 | #$r += ($_ % $y) * $bm; | ||||
1408 | #$bm *= $b; | ||||
1409 | #$bm %= $y; | ||||
1410 | #$r %= $y; | ||||
1411 | } | ||||
1412 | $r = 0 if $r == $y; | ||||
1413 | $x->[0] = $r; | ||||
1414 | } | ||||
1415 | @$x = $x->[0]; # keep one element of @$x | ||||
1416 | return $x; | ||||
1417 | } | ||||
1418 | |||||
1419 | ############################################################################## | ||||
1420 | # shifts | ||||
1421 | |||||
1422 | sub _rsft | ||||
1423 | { | ||||
1424 | my ($c,$x,$y,$n) = @_; | ||||
1425 | |||||
1426 | if ($n != 10) | ||||
1427 | { | ||||
1428 | $n = _new($c,$n); return _div($c,$x, _pow($c,$n,$y)); | ||||
1429 | } | ||||
1430 | |||||
1431 | # shortcut (faster) for shifting by 10) | ||||
1432 | # multiples of $BASE_LEN | ||||
1433 | my $dst = 0; # destination | ||||
1434 | my $src = _num($c,$y); # as normal int | ||||
1435 | my $xlen = (@$x-1)*$BASE_LEN+length(int($x->[-1])); # len of x in digits | ||||
1436 | if ($src >= $xlen or ($src == $xlen and ! defined $x->[1])) | ||||
1437 | { | ||||
1438 | # 12345 67890 shifted right by more than 10 digits => 0 | ||||
1439 | splice (@$x,1); # leave only one element | ||||
1440 | $x->[0] = 0; # set to zero | ||||
1441 | return $x; | ||||
1442 | } | ||||
1443 | my $rem = $src % $BASE_LEN; # remainder to shift | ||||
1444 | $src = int($src / $BASE_LEN); # source | ||||
1445 | if ($rem == 0) | ||||
1446 | { | ||||
1447 | splice (@$x,0,$src); # even faster, 38.4 => 39.3 | ||||
1448 | } | ||||
1449 | else | ||||
1450 | { | ||||
1451 | my $len = scalar @$x - $src; # elems to go | ||||
1452 | my $vd; my $z = '0'x $BASE_LEN; | ||||
1453 | $x->[scalar @$x] = 0; # avoid || 0 test inside loop | ||||
1454 | while ($dst < $len) | ||||
1455 | { | ||||
1456 | $vd = $z.$x->[$src]; | ||||
1457 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN-$rem); | ||||
1458 | $src++; | ||||
1459 | $vd = substr($z.$x->[$src],-$rem,$rem) . $vd; | ||||
1460 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN; | ||||
1461 | $x->[$dst] = int($vd); | ||||
1462 | $dst++; | ||||
1463 | } | ||||
1464 | splice (@$x,$dst) if $dst > 0; # kill left-over array elems | ||||
1465 | pop @$x if $x->[-1] == 0 && @$x > 1; # kill last element if 0 | ||||
1466 | } # else rem == 0 | ||||
1467 | $x; | ||||
1468 | } | ||||
1469 | |||||
1470 | sub _lsft | ||||
1471 | { | ||||
1472 | my ($c,$x,$y,$n) = @_; | ||||
1473 | |||||
1474 | if ($n != 10) | ||||
1475 | { | ||||
1476 | $n = _new($c,$n); return _mul($c,$x, _pow($c,$n,$y)); | ||||
1477 | } | ||||
1478 | |||||
1479 | # shortcut (faster) for shifting by 10) since we are in base 10eX | ||||
1480 | # multiples of $BASE_LEN: | ||||
1481 | my $src = scalar @$x; # source | ||||
1482 | my $len = _num($c,$y); # shift-len as normal int | ||||
1483 | my $rem = $len % $BASE_LEN; # remainder to shift | ||||
1484 | my $dst = $src + int($len/$BASE_LEN); # destination | ||||
1485 | my $vd; # further speedup | ||||
1486 | $x->[$src] = 0; # avoid first ||0 for speed | ||||
1487 | my $z = '0' x $BASE_LEN; | ||||
1488 | while ($src >= 0) | ||||
1489 | { | ||||
1490 | $vd = $x->[$src]; $vd = $z.$vd; | ||||
1491 | $vd = substr($vd,-$BASE_LEN+$rem,$BASE_LEN-$rem); | ||||
1492 | $vd .= $src > 0 ? substr($z.$x->[$src-1],-$BASE_LEN,$rem) : '0' x $rem; | ||||
1493 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN; | ||||
1494 | $x->[$dst] = int($vd); | ||||
1495 | $dst--; $src--; | ||||
1496 | } | ||||
1497 | # set lowest parts to 0 | ||||
1498 | while ($dst >= 0) { $x->[$dst--] = 0; } | ||||
1499 | # fix spurious last zero element | ||||
1500 | splice @$x,-1 if $x->[-1] == 0; | ||||
1501 | $x; | ||||
1502 | } | ||||
1503 | |||||
1504 | sub _pow | ||||
1505 | { | ||||
1506 | # power of $x to $y | ||||
1507 | # ref to array, ref to array, return ref to array | ||||
1508 | my ($c,$cx,$cy) = @_; | ||||
1509 | |||||
1510 | if (scalar @$cy == 1 && $cy->[0] == 0) | ||||
1511 | { | ||||
1512 | splice (@$cx,1); $cx->[0] = 1; # y == 0 => x => 1 | ||||
1513 | return $cx; | ||||
1514 | } | ||||
1515 | if ((scalar @$cx == 1 && $cx->[0] == 1) || # x == 1 | ||||
1516 | (scalar @$cy == 1 && $cy->[0] == 1)) # or y == 1 | ||||
1517 | { | ||||
1518 | return $cx; | ||||
1519 | } | ||||
1520 | if (scalar @$cx == 1 && $cx->[0] == 0) | ||||
1521 | { | ||||
1522 | splice (@$cx,1); $cx->[0] = 0; # 0 ** y => 0 (if not y <= 0) | ||||
1523 | return $cx; | ||||
1524 | } | ||||
1525 | |||||
1526 | my $pow2 = _one(); | ||||
1527 | |||||
1528 | my $y_bin = _as_bin($c,$cy); $y_bin =~ s/^0b//; | ||||
1529 | my $len = length($y_bin); | ||||
1530 | while (--$len > 0) | ||||
1531 | { | ||||
1532 | _mul($c,$pow2,$cx) if substr($y_bin,$len,1) eq '1'; # is odd? | ||||
1533 | _mul($c,$cx,$cx); | ||||
1534 | } | ||||
1535 | |||||
1536 | _mul($c,$cx,$pow2); | ||||
1537 | $cx; | ||||
1538 | } | ||||
1539 | |||||
1540 | sub _nok { | ||||
1541 | # Return binomial coefficient (n over k). | ||||
1542 | # Given refs to arrays, return ref to array. | ||||
1543 | # First input argument is modified. | ||||
1544 | |||||
1545 | my ($c, $n, $k) = @_; | ||||
1546 | |||||
1547 | # If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as | ||||
1548 | # nok(n, n-k), to minimize the number if iterations in the loop. | ||||
1549 | |||||
1550 | { | ||||
1551 | my $twok = _mul($c, _two($c), _copy($c, $k)); # 2 * k | ||||
1552 | if (_acmp($c, $twok, $n) > 0) { # if 2*k > n | ||||
1553 | $k = _sub($c, _copy($c, $n), $k); # k = n - k | ||||
1554 | } | ||||
1555 | } | ||||
1556 | |||||
1557 | # Example: | ||||
1558 | # | ||||
1559 | # / 7 \ 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7 | ||||
1560 | # | | = --------- = --------------- = --------- = 5 * - * - | ||||
1561 | # \ 3 / (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3 | ||||
1562 | |||||
1563 | if (_is_zero($c, $k)) { | ||||
1564 | @$n = 1; | ||||
1565 | } | ||||
1566 | |||||
1567 | else { | ||||
1568 | |||||
1569 | # Make a copy of the original n, since we'll be modifying n in-place. | ||||
1570 | |||||
1571 | my $n_orig = _copy($c, $n); | ||||
1572 | |||||
1573 | # n = 5, f = 6, d = 2 (cf. example above) | ||||
1574 | |||||
1575 | _sub($c, $n, $k); | ||||
1576 | _inc($c, $n); | ||||
1577 | |||||
1578 | my $f = _copy($c, $n); | ||||
1579 | _inc($c, $f); | ||||
1580 | |||||
1581 | my $d = _two($c); | ||||
1582 | |||||
1583 | # while f <= n (the original n, that is) ... | ||||
1584 | |||||
1585 | while (_acmp($c, $f, $n_orig) <= 0) { | ||||
1586 | |||||
1587 | # n = (n * f / d) == 5 * 6 / 2 (cf. example above) | ||||
1588 | |||||
1589 | _mul($c, $n, $f); | ||||
1590 | _div($c, $n, $d); | ||||
1591 | |||||
1592 | # f = 7, d = 3 (cf. example above) | ||||
1593 | |||||
1594 | _inc($c, $f); | ||||
1595 | _inc($c, $d); | ||||
1596 | } | ||||
1597 | |||||
1598 | } | ||||
1599 | |||||
1600 | return $n; | ||||
1601 | } | ||||
1602 | |||||
1603 | 1 | 900ns | my @factorials = ( | ||
1604 | 1, | ||||
1605 | 1, | ||||
1606 | 2, | ||||
1607 | 2*3, | ||||
1608 | 2*3*4, | ||||
1609 | 2*3*4*5, | ||||
1610 | 2*3*4*5*6, | ||||
1611 | 2*3*4*5*6*7, | ||||
1612 | ); | ||||
1613 | |||||
1614 | sub _fac | ||||
1615 | { | ||||
1616 | # factorial of $x | ||||
1617 | # ref to array, return ref to array | ||||
1618 | my ($c,$cx) = @_; | ||||
1619 | |||||
1620 | if ((@$cx == 1) && ($cx->[0] <= 7)) | ||||
1621 | { | ||||
1622 | $cx->[0] = $factorials[$cx->[0]]; # 0 => 1, 1 => 1, 2 => 2 etc. | ||||
1623 | return $cx; | ||||
1624 | } | ||||
1625 | |||||
1626 | if ((@$cx == 1) && # we do this only if $x >= 12 and $x <= 7000 | ||||
1627 | ($cx->[0] >= 12 && $cx->[0] < 7000)) | ||||
1628 | { | ||||
1629 | |||||
1630 | # Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j) | ||||
1631 | # See http://blogten.blogspot.com/2007/01/calculating-n.html | ||||
1632 | # The above series can be expressed as factors: | ||||
1633 | # k * k - (j - i) * 2 | ||||
1634 | # We cache k*k, and calculate (j * j) as the sum of the first j odd integers | ||||
1635 | |||||
1636 | # This will not work when N exceeds the storage of a Perl scalar, however, | ||||
1637 | # in this case the algorithm would be way to slow to terminate, anyway. | ||||
1638 | |||||
1639 | # As soon as the last element of $cx is 0, we split it up and remember | ||||
1640 | # how many zeors we got so far. The reason is that n! will accumulate | ||||
1641 | # zeros at the end rather fast. | ||||
1642 | my $zero_elements = 0; | ||||
1643 | |||||
1644 | # If n is even, set n = n -1 | ||||
1645 | my $k = _num($c,$cx); my $even = 1; | ||||
1646 | if (($k & 1) == 0) | ||||
1647 | { | ||||
1648 | $even = $k; $k --; | ||||
1649 | } | ||||
1650 | # set k to the center point | ||||
1651 | $k = ($k + 1) / 2; | ||||
1652 | # print "k $k even: $even\n"; | ||||
1653 | # now calculate k * k | ||||
1654 | my $k2 = $k * $k; | ||||
1655 | my $odd = 1; my $sum = 1; | ||||
1656 | my $i = $k - 1; | ||||
1657 | # keep reference to x | ||||
1658 | my $new_x = _new($c, $k * $even); | ||||
1659 | @$cx = @$new_x; | ||||
1660 | if ($cx->[0] == 0) | ||||
1661 | { | ||||
1662 | $zero_elements ++; shift @$cx; | ||||
1663 | } | ||||
1664 | # print STDERR "x = ", _str($c,$cx),"\n"; | ||||
1665 | my $BASE2 = int(sqrt($BASE))-1; | ||||
1666 | my $j = 1; | ||||
1667 | while ($j <= $i) | ||||
1668 | { | ||||
1669 | my $m = ($k2 - $sum); $odd += 2; $sum += $odd; $j++; | ||||
1670 | while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2)) | ||||
1671 | { | ||||
1672 | $m *= ($k2 - $sum); | ||||
1673 | $odd += 2; $sum += $odd; $j++; | ||||
1674 | # print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1); | ||||
1675 | } | ||||
1676 | if ($m < $BASE) | ||||
1677 | { | ||||
1678 | _mul($c,$cx,[$m]); | ||||
1679 | } | ||||
1680 | else | ||||
1681 | { | ||||
1682 | _mul($c,$cx,$c->_new($m)); | ||||
1683 | } | ||||
1684 | if ($cx->[0] == 0) | ||||
1685 | { | ||||
1686 | $zero_elements ++; shift @$cx; | ||||
1687 | } | ||||
1688 | # print STDERR "Calculate $k2 - $sum = $m (x = ", _str($c,$cx),")\n"; | ||||
1689 | } | ||||
1690 | # multiply in the zeros again | ||||
1691 | unshift @$cx, (0) x $zero_elements; | ||||
1692 | return $cx; | ||||
1693 | } | ||||
1694 | |||||
1695 | # go forward until $base is exceeded | ||||
1696 | # limit is either $x steps (steps == 100 means a result always too high) or | ||||
1697 | # $base. | ||||
1698 | my $steps = 100; $steps = $cx->[0] if @$cx == 1; | ||||
1699 | my $r = 2; my $cf = 3; my $step = 2; my $last = $r; | ||||
1700 | while ($r*$cf < $BASE && $step < $steps) | ||||
1701 | { | ||||
1702 | $last = $r; $r *= $cf++; $step++; | ||||
1703 | } | ||||
1704 | if ((@$cx == 1) && $step == $cx->[0]) | ||||
1705 | { | ||||
1706 | # completely done, so keep reference to $x and return | ||||
1707 | $cx->[0] = $r; | ||||
1708 | return $cx; | ||||
1709 | } | ||||
1710 | |||||
1711 | # now we must do the left over steps | ||||
1712 | my $n; # steps still to do | ||||
1713 | if (scalar @$cx == 1) | ||||
1714 | { | ||||
1715 | $n = $cx->[0]; | ||||
1716 | } | ||||
1717 | else | ||||
1718 | { | ||||
1719 | $n = _copy($c,$cx); | ||||
1720 | } | ||||
1721 | |||||
1722 | # Set $cx to the last result below $BASE (but keep ref to $x) | ||||
1723 | $cx->[0] = $last; splice (@$cx,1); | ||||
1724 | # As soon as the last element of $cx is 0, we split it up and remember | ||||
1725 | # how many zeors we got so far. The reason is that n! will accumulate | ||||
1726 | # zeros at the end rather fast. | ||||
1727 | my $zero_elements = 0; | ||||
1728 | |||||
1729 | # do left-over steps fit into a scalar? | ||||
1730 | if (ref $n eq 'ARRAY') | ||||
1731 | { | ||||
1732 | # No, so use slower inc() & cmp() | ||||
1733 | # ($n is at least $BASE here) | ||||
1734 | my $base_2 = int(sqrt($BASE)) - 1; | ||||
1735 | #print STDERR "base_2: $base_2\n"; | ||||
1736 | while ($step < $base_2) | ||||
1737 | { | ||||
1738 | if ($cx->[0] == 0) | ||||
1739 | { | ||||
1740 | $zero_elements ++; shift @$cx; | ||||
1741 | } | ||||
1742 | my $b = $step * ($step + 1); $step += 2; | ||||
1743 | _mul($c,$cx,[$b]); | ||||
1744 | } | ||||
1745 | $step = [$step]; | ||||
1746 | while (_acmp($c,$step,$n) <= 0) | ||||
1747 | { | ||||
1748 | if ($cx->[0] == 0) | ||||
1749 | { | ||||
1750 | $zero_elements ++; shift @$cx; | ||||
1751 | } | ||||
1752 | _mul($c,$cx,$step); _inc($c,$step); | ||||
1753 | } | ||||
1754 | } | ||||
1755 | else | ||||
1756 | { | ||||
1757 | # Yes, so we can speed it up slightly | ||||
1758 | |||||
1759 | # print "# left over steps $n\n"; | ||||
1760 | |||||
1761 | my $base_4 = int(sqrt(sqrt($BASE))) - 2; | ||||
1762 | #print STDERR "base_4: $base_4\n"; | ||||
1763 | my $n4 = $n - 4; | ||||
1764 | while ($step < $n4 && $step < $base_4) | ||||
1765 | { | ||||
1766 | if ($cx->[0] == 0) | ||||
1767 | { | ||||
1768 | $zero_elements ++; shift @$cx; | ||||
1769 | } | ||||
1770 | my $b = $step * ($step + 1); $step += 2; $b *= $step * ($step + 1); $step += 2; | ||||
1771 | _mul($c,$cx,[$b]); | ||||
1772 | } | ||||
1773 | my $base_2 = int(sqrt($BASE)) - 1; | ||||
1774 | my $n2 = $n - 2; | ||||
1775 | #print STDERR "base_2: $base_2\n"; | ||||
1776 | while ($step < $n2 && $step < $base_2) | ||||
1777 | { | ||||
1778 | if ($cx->[0] == 0) | ||||
1779 | { | ||||
1780 | $zero_elements ++; shift @$cx; | ||||
1781 | } | ||||
1782 | my $b = $step * ($step + 1); $step += 2; | ||||
1783 | _mul($c,$cx,[$b]); | ||||
1784 | } | ||||
1785 | # do what's left over | ||||
1786 | while ($step <= $n) | ||||
1787 | { | ||||
1788 | _mul($c,$cx,[$step]); $step++; | ||||
1789 | if ($cx->[0] == 0) | ||||
1790 | { | ||||
1791 | $zero_elements ++; shift @$cx; | ||||
1792 | } | ||||
1793 | } | ||||
1794 | } | ||||
1795 | # multiply in the zeros again | ||||
1796 | unshift @$cx, (0) x $zero_elements; | ||||
1797 | $cx; # return result | ||||
1798 | } | ||||
1799 | |||||
1800 | ############################################################################# | ||||
1801 | |||||
1802 | sub _log_int | ||||
1803 | { | ||||
1804 | # calculate integer log of $x to base $base | ||||
1805 | # ref to array, ref to array - return ref to array | ||||
1806 | my ($c,$x,$base) = @_; | ||||
1807 | |||||
1808 | # X == 0 => NaN | ||||
1809 | return if (scalar @$x == 1 && $x->[0] == 0); | ||||
1810 | # BASE 0 or 1 => NaN | ||||
1811 | return if (scalar @$base == 1 && $base->[0] < 2); | ||||
1812 | my $cmp = _acmp($c,$x,$base); # X == BASE => 1 | ||||
1813 | if ($cmp == 0) | ||||
1814 | { | ||||
1815 | splice (@$x,1); $x->[0] = 1; | ||||
1816 | return ($x,1) | ||||
1817 | } | ||||
1818 | # X < BASE | ||||
1819 | if ($cmp < 0) | ||||
1820 | { | ||||
1821 | splice (@$x,1); $x->[0] = 0; | ||||
1822 | return ($x,undef); | ||||
1823 | } | ||||
1824 | |||||
1825 | my $x_org = _copy($c,$x); # preserve x | ||||
1826 | splice(@$x,1); $x->[0] = 1; # keep ref to $x | ||||
1827 | |||||
1828 | # Compute a guess for the result based on: | ||||
1829 | # $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) ) | ||||
1830 | my $len = _len($c,$x_org); | ||||
1831 | my $log = log($base->[-1]) / log(10); | ||||
1832 | |||||
1833 | # for each additional element in $base, we add $BASE_LEN to the result, | ||||
1834 | # based on the observation that log($BASE,10) is BASE_LEN and | ||||
1835 | # log(x*y) == log(x) + log(y): | ||||
1836 | $log += ((scalar @$base)-1) * $BASE_LEN; | ||||
1837 | |||||
1838 | # calculate now a guess based on the values obtained above: | ||||
1839 | my $res = int($len / $log); | ||||
1840 | |||||
1841 | $x->[0] = $res; | ||||
1842 | my $trial = _pow ($c, _copy($c, $base), $x); | ||||
1843 | my $a = _acmp($c,$trial,$x_org); | ||||
1844 | |||||
1845 | # print STDERR "# trial ", _str($c,$x)," was: $a (0 = exact, -1 too small, +1 too big)\n"; | ||||
1846 | |||||
1847 | # found an exact result? | ||||
1848 | return ($x,1) if $a == 0; | ||||
1849 | |||||
1850 | if ($a > 0) | ||||
1851 | { | ||||
1852 | # or too big | ||||
1853 | _div($c,$trial,$base); _dec($c, $x); | ||||
1854 | while (($a = _acmp($c,$trial,$x_org)) > 0) | ||||
1855 | { | ||||
1856 | # print STDERR "# big _log_int at ", _str($c,$x), "\n"; | ||||
1857 | _div($c,$trial,$base); _dec($c, $x); | ||||
1858 | } | ||||
1859 | # result is now exact (a == 0), or too small (a < 0) | ||||
1860 | return ($x, $a == 0 ? 1 : 0); | ||||
1861 | } | ||||
1862 | |||||
1863 | # else: result was to small | ||||
1864 | _mul($c,$trial,$base); | ||||
1865 | |||||
1866 | # did we now get the right result? | ||||
1867 | $a = _acmp($c,$trial,$x_org); | ||||
1868 | |||||
1869 | if ($a == 0) # yes, exactly | ||||
1870 | { | ||||
1871 | _inc($c, $x); | ||||
1872 | return ($x,1); | ||||
1873 | } | ||||
1874 | return ($x,0) if $a > 0; | ||||
1875 | |||||
1876 | # Result still too small (we should come here only if the estimate above | ||||
1877 | # was very off base): | ||||
1878 | |||||
1879 | # Now let the normal trial run obtain the real result | ||||
1880 | # Simple loop that increments $x by 2 in each step, possible overstepping | ||||
1881 | # the real result | ||||
1882 | |||||
1883 | my $base_mul = _mul($c, _copy($c,$base), $base); # $base * $base | ||||
1884 | |||||
1885 | while (($a = _acmp($c,$trial,$x_org)) < 0) | ||||
1886 | { | ||||
1887 | # print STDERR "# small _log_int at ", _str($c,$x), "\n"; | ||||
1888 | _mul($c,$trial,$base_mul); _add($c, $x, [2]); | ||||
1889 | } | ||||
1890 | |||||
1891 | my $exact = 1; | ||||
1892 | if ($a > 0) | ||||
1893 | { | ||||
1894 | # overstepped the result | ||||
1895 | _dec($c, $x); | ||||
1896 | _div($c,$trial,$base); | ||||
1897 | $a = _acmp($c,$trial,$x_org); | ||||
1898 | if ($a > 0) | ||||
1899 | { | ||||
1900 | _dec($c, $x); | ||||
1901 | } | ||||
1902 | $exact = 0 if $a != 0; # a = -1 => not exact result, a = 0 => exact | ||||
1903 | } | ||||
1904 | |||||
1905 | ($x,$exact); # return result | ||||
1906 | } | ||||
1907 | |||||
1908 | # for debugging: | ||||
1909 | 2 | 797µs | 2 | 99µs | # spent 55µs (11+44) within Math::BigInt::Calc::BEGIN@1909 which was called:
# once (11µs+44µs) by Math::BigInt::BEGIN@1 at line 1909 # spent 55µs making 1 call to Math::BigInt::Calc::BEGIN@1909
# spent 44µs making 1 call to constant::import |
1910 | 1 | 200ns | my $steps = 0; | ||
1911 | sub steps { $steps }; | ||||
1912 | |||||
1913 | sub _sqrt | ||||
1914 | { | ||||
1915 | # square-root of $x in place | ||||
1916 | # Compute a guess of the result (by rule of thumb), then improve it via | ||||
1917 | # Newton's method. | ||||
1918 | my ($c,$x) = @_; | ||||
1919 | |||||
1920 | if (scalar @$x == 1) | ||||
1921 | { | ||||
1922 | # fits into one Perl scalar, so result can be computed directly | ||||
1923 | $x->[0] = int(sqrt($x->[0])); | ||||
1924 | return $x; | ||||
1925 | } | ||||
1926 | my $y = _copy($c,$x); | ||||
1927 | # hopefully _len/2 is < $BASE, the -1 is to always undershot the guess | ||||
1928 | # since our guess will "grow" | ||||
1929 | my $l = int((_len($c,$x)-1) / 2); | ||||
1930 | |||||
1931 | my $lastelem = $x->[-1]; # for guess | ||||
1932 | my $elems = scalar @$x - 1; | ||||
1933 | # not enough digits, but could have more? | ||||
1934 | if ((length($lastelem) <= 3) && ($elems > 1)) | ||||
1935 | { | ||||
1936 | # right-align with zero pad | ||||
1937 | my $len = length($lastelem) & 1; | ||||
1938 | print "$lastelem => " if DEBUG; | ||||
1939 | $lastelem .= substr($x->[-2] . '0' x $BASE_LEN,0,$BASE_LEN); | ||||
1940 | # former odd => make odd again, or former even to even again | ||||
1941 | $lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len; | ||||
1942 | print "$lastelem\n" if DEBUG; | ||||
1943 | } | ||||
1944 | |||||
1945 | # construct $x (instead of _lsft($c,$x,$l,10) | ||||
1946 | my $r = $l % $BASE_LEN; # 10000 00000 00000 00000 ($BASE_LEN=5) | ||||
1947 | $l = int($l / $BASE_LEN); | ||||
1948 | print "l = $l " if DEBUG; | ||||
1949 | |||||
1950 | splice @$x,$l; # keep ref($x), but modify it | ||||
1951 | |||||
1952 | # we make the first part of the guess not '1000...0' but int(sqrt($lastelem)) | ||||
1953 | # that gives us: | ||||
1954 | # 14400 00000 => sqrt(14400) => guess first digits to be 120 | ||||
1955 | # 144000 000000 => sqrt(144000) => guess 379 | ||||
1956 | |||||
1957 | print "$lastelem (elems $elems) => " if DEBUG; | ||||
1958 | $lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even? | ||||
1959 | my $g = sqrt($lastelem); $g =~ s/\.//; # 2.345 => 2345 | ||||
1960 | $r -= 1 if $elems & 1 == 0; # 70 => 7 | ||||
1961 | |||||
1962 | # padd with zeros if result is too short | ||||
1963 | $x->[$l--] = int(substr($g . '0' x $r,0,$r+1)); | ||||
1964 | print "now ",$x->[-1] if DEBUG; | ||||
1965 | print " would have been ", int('1' . '0' x $r),"\n" if DEBUG; | ||||
1966 | |||||
1967 | # If @$x > 1, we could compute the second elem of the guess, too, to create | ||||
1968 | # an even better guess. Not implemented yet. Does it improve performance? | ||||
1969 | $x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero | ||||
1970 | |||||
1971 | print "start x= ",_str($c,$x),"\n" if DEBUG; | ||||
1972 | my $two = _two(); | ||||
1973 | my $last = _zero(); | ||||
1974 | my $lastlast = _zero(); | ||||
1975 | $steps = 0 if DEBUG; | ||||
1976 | while (_acmp($c,$last,$x) != 0 && _acmp($c,$lastlast,$x) != 0) | ||||
1977 | { | ||||
1978 | $steps++ if DEBUG; | ||||
1979 | $lastlast = _copy($c,$last); | ||||
1980 | $last = _copy($c,$x); | ||||
1981 | _add($c,$x, _div($c,_copy($c,$y),$x)); | ||||
1982 | _div($c,$x, $two ); | ||||
1983 | print " x= ",_str($c,$x),"\n" if DEBUG; | ||||
1984 | } | ||||
1985 | print "\nsteps in sqrt: $steps, " if DEBUG; | ||||
1986 | _dec($c,$x) if _acmp($c,$y,_mul($c,_copy($c,$x),$x)) < 0; # overshot? | ||||
1987 | print " final ",$x->[-1],"\n" if DEBUG; | ||||
1988 | $x; | ||||
1989 | } | ||||
1990 | |||||
1991 | sub _root | ||||
1992 | { | ||||
1993 | # take n'th root of $x in place (n >= 3) | ||||
1994 | my ($c,$x,$n) = @_; | ||||
1995 | |||||
1996 | if (scalar @$x == 1) | ||||
1997 | { | ||||
1998 | if (scalar @$n > 1) | ||||
1999 | { | ||||
2000 | # result will always be smaller than 2 so trunc to 1 at once | ||||
2001 | $x->[0] = 1; | ||||
2002 | } | ||||
2003 | else | ||||
2004 | { | ||||
2005 | # fits into one Perl scalar, so result can be computed directly | ||||
2006 | # cannot use int() here, because it rounds wrongly (try | ||||
2007 | # (81 ** 3) ** (1/3) to see what I mean) | ||||
2008 | #$x->[0] = int( $x->[0] ** (1 / $n->[0]) ); | ||||
2009 | # round to 8 digits, then truncate result to integer | ||||
2010 | $x->[0] = int ( sprintf ("%.8f", $x->[0] ** (1 / $n->[0]) ) ); | ||||
2011 | } | ||||
2012 | return $x; | ||||
2013 | } | ||||
2014 | |||||
2015 | # we know now that X is more than one element long | ||||
2016 | |||||
2017 | # if $n is a power of two, we can repeatedly take sqrt($X) and find the | ||||
2018 | # proper result, because sqrt(sqrt($x)) == root($x,4) | ||||
2019 | my $b = _as_bin($c,$n); | ||||
2020 | if ($b =~ /0b1(0+)$/) | ||||
2021 | { | ||||
2022 | my $count = CORE::length($1); # 0b100 => len('00') => 2 | ||||
2023 | my $cnt = $count; # counter for loop | ||||
2024 | unshift (@$x, 0); # add one element, together with one | ||||
2025 | # more below in the loop this makes 2 | ||||
2026 | while ($cnt-- > 0) | ||||
2027 | { | ||||
2028 | # 'inflate' $X by adding one element, basically computing | ||||
2029 | # $x * $BASE * $BASE. This gives us more $BASE_LEN digits for result | ||||
2030 | # since len(sqrt($X)) approx == len($x) / 2. | ||||
2031 | unshift (@$x, 0); | ||||
2032 | # calculate sqrt($x), $x is now one element to big, again. In the next | ||||
2033 | # round we make that two, again. | ||||
2034 | _sqrt($c,$x); | ||||
2035 | } | ||||
2036 | # $x is now one element to big, so truncate result by removing it | ||||
2037 | splice (@$x,0,1); | ||||
2038 | } | ||||
2039 | else | ||||
2040 | { | ||||
2041 | # trial computation by starting with 2,4,8,16 etc until we overstep | ||||
2042 | my $step; | ||||
2043 | my $trial = _two(); | ||||
2044 | |||||
2045 | # while still to do more than X steps | ||||
2046 | do | ||||
2047 | { | ||||
2048 | $step = _two(); | ||||
2049 | while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0) | ||||
2050 | { | ||||
2051 | _mul ($c, $step, [2]); | ||||
2052 | _add ($c, $trial, $step); | ||||
2053 | } | ||||
2054 | |||||
2055 | # hit exactly? | ||||
2056 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) == 0) | ||||
2057 | { | ||||
2058 | @$x = @$trial; # make copy while preserving ref to $x | ||||
2059 | return $x; | ||||
2060 | } | ||||
2061 | # overstepped, so go back on step | ||||
2062 | _sub($c, $trial, $step); | ||||
2063 | } while (scalar @$step > 1 || $step->[0] > 128); | ||||
2064 | |||||
2065 | # reset step to 2 | ||||
2066 | $step = _two(); | ||||
2067 | # add two, because $trial cannot be exactly the result (otherwise we would | ||||
2068 | # already have found it) | ||||
2069 | _add($c, $trial, $step); | ||||
2070 | |||||
2071 | # and now add more and more (2,4,6,8,10 etc) | ||||
2072 | while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0) | ||||
2073 | { | ||||
2074 | _add ($c, $trial, $step); | ||||
2075 | } | ||||
2076 | |||||
2077 | # hit not exactly? (overstepped) | ||||
2078 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0) | ||||
2079 | { | ||||
2080 | _dec($c,$trial); | ||||
2081 | } | ||||
2082 | |||||
2083 | # hit not exactly? (overstepped) | ||||
2084 | # 80 too small, 81 slightly too big, 82 too big | ||||
2085 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0) | ||||
2086 | { | ||||
2087 | _dec ($c, $trial); | ||||
2088 | } | ||||
2089 | |||||
2090 | @$x = @$trial; # make copy while preserving ref to $x | ||||
2091 | return $x; | ||||
2092 | } | ||||
2093 | $x; | ||||
2094 | } | ||||
2095 | |||||
2096 | ############################################################################## | ||||
2097 | # binary stuff | ||||
2098 | |||||
2099 | sub _and | ||||
2100 | { | ||||
2101 | my ($c,$x,$y) = @_; | ||||
2102 | |||||
2103 | # the shortcut makes equal, large numbers _really_ fast, and makes only a | ||||
2104 | # very small performance drop for small numbers (e.g. something with less | ||||
2105 | # than 32 bit) Since we optimize for large numbers, this is enabled. | ||||
2106 | return $x if _acmp($c,$x,$y) == 0; # shortcut | ||||
2107 | |||||
2108 | my $m = _one(); my ($xr,$yr); | ||||
2109 | my $mask = $AND_MASK; | ||||
2110 | |||||
2111 | my $x1 = $x; | ||||
2112 | my $y1 = _copy($c,$y); # make copy | ||||
2113 | $x = _zero(); | ||||
2114 | my ($b,$xrr,$yrr); | ||||
2115 | 2 | 136µs | 2 | 12µs | # spent 10µs (8+2) within Math::BigInt::Calc::BEGIN@2115 which was called:
# once (8µs+2µs) by Math::BigInt::BEGIN@1 at line 2115 # spent 10µs making 1 call to Math::BigInt::Calc::BEGIN@2115
# spent 2µs making 1 call to integer::import |
2116 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
2117 | { | ||||
2118 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
2119 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
2120 | |||||
2121 | # make ints() from $xr, $yr | ||||
2122 | # this is when the AND_BITS are greater than $BASE and is slower for | ||||
2123 | # small (<256 bits) numbers, but faster for large numbers. Disabled | ||||
2124 | # due to KISS principle | ||||
2125 | |||||
2126 | # $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
2127 | # $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
2128 | # _add($c,$x, _mul($c, _new( $c, ($xrr & $yrr) ), $m) ); | ||||
2129 | |||||
2130 | # 0+ due to '&' doesn't work in strings | ||||
2131 | _add($c,$x, _mul($c, [ 0+$xr->[0] & 0+$yr->[0] ], $m) ); | ||||
2132 | _mul($c,$m,$mask); | ||||
2133 | } | ||||
2134 | $x; | ||||
2135 | } | ||||
2136 | |||||
2137 | sub _xor | ||||
2138 | { | ||||
2139 | my ($c,$x,$y) = @_; | ||||
2140 | |||||
2141 | return _zero() if _acmp($c,$x,$y) == 0; # shortcut (see -and) | ||||
2142 | |||||
2143 | my $m = _one(); my ($xr,$yr); | ||||
2144 | my $mask = $XOR_MASK; | ||||
2145 | |||||
2146 | my $x1 = $x; | ||||
2147 | my $y1 = _copy($c,$y); # make copy | ||||
2148 | $x = _zero(); | ||||
2149 | my ($b,$xrr,$yrr); | ||||
2150 | 2 | 145µs | 2 | 10µs | # spent 8µs (7+1) within Math::BigInt::Calc::BEGIN@2150 which was called:
# once (7µs+1µs) by Math::BigInt::BEGIN@1 at line 2150 # spent 8µs making 1 call to Math::BigInt::Calc::BEGIN@2150
# spent 1µs making 1 call to integer::import |
2151 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
2152 | { | ||||
2153 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
2154 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
2155 | # make ints() from $xr, $yr (see _and()) | ||||
2156 | #$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
2157 | #$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
2158 | #_add($c,$x, _mul($c, _new( $c, ($xrr ^ $yrr) ), $m) ); | ||||
2159 | |||||
2160 | # 0+ due to '^' doesn't work in strings | ||||
2161 | _add($c,$x, _mul($c, [ 0+$xr->[0] ^ 0+$yr->[0] ], $m) ); | ||||
2162 | _mul($c,$m,$mask); | ||||
2163 | } | ||||
2164 | # the loop stops when the shorter of the two numbers is exhausted | ||||
2165 | # the remainder of the longer one will survive bit-by-bit, so we simple | ||||
2166 | # multiply-add it in | ||||
2167 | _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1); | ||||
2168 | _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1); | ||||
2169 | |||||
2170 | $x; | ||||
2171 | } | ||||
2172 | |||||
2173 | sub _or | ||||
2174 | { | ||||
2175 | my ($c,$x,$y) = @_; | ||||
2176 | |||||
2177 | return $x if _acmp($c,$x,$y) == 0; # shortcut (see _and) | ||||
2178 | |||||
2179 | my $m = _one(); my ($xr,$yr); | ||||
2180 | my $mask = $OR_MASK; | ||||
2181 | |||||
2182 | my $x1 = $x; | ||||
2183 | my $y1 = _copy($c,$y); # make copy | ||||
2184 | $x = _zero(); | ||||
2185 | my ($b,$xrr,$yrr); | ||||
2186 | 2 | 1.40ms | 2 | 13µs | # spent 11µs (10+1) within Math::BigInt::Calc::BEGIN@2186 which was called:
# once (10µs+1µs) by Math::BigInt::BEGIN@1 at line 2186 # spent 11µs making 1 call to Math::BigInt::Calc::BEGIN@2186
# spent 2µs making 1 call to integer::import |
2187 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
2188 | { | ||||
2189 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
2190 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
2191 | # make ints() from $xr, $yr (see _and()) | ||||
2192 | # $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
2193 | # $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
2194 | # _add($c,$x, _mul($c, _new( $c, ($xrr | $yrr) ), $m) ); | ||||
2195 | |||||
2196 | # 0+ due to '|' doesn't work in strings | ||||
2197 | _add($c,$x, _mul($c, [ 0+$xr->[0] | 0+$yr->[0] ], $m) ); | ||||
2198 | _mul($c,$m,$mask); | ||||
2199 | } | ||||
2200 | # the loop stops when the shorter of the two numbers is exhausted | ||||
2201 | # the remainder of the longer one will survive bit-by-bit, so we simple | ||||
2202 | # multiply-add it in | ||||
2203 | _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1); | ||||
2204 | _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1); | ||||
2205 | |||||
2206 | $x; | ||||
2207 | } | ||||
2208 | |||||
2209 | sub _as_hex | ||||
2210 | { | ||||
2211 | # convert a decimal number to hex (ref to array, return ref to string) | ||||
2212 | my ($c,$x) = @_; | ||||
2213 | |||||
2214 | # fits into one element (handle also 0x0 case) | ||||
2215 | return sprintf("0x%x",$x->[0]) if @$x == 1; | ||||
2216 | |||||
2217 | my $x1 = _copy($c,$x); | ||||
2218 | |||||
2219 | my $es = ''; | ||||
2220 | my ($xr, $h, $x10000); | ||||
2221 | if ($] >= 5.006) | ||||
2222 | { | ||||
2223 | $x10000 = [ 0x10000 ]; $h = 'h4'; | ||||
2224 | } | ||||
2225 | else | ||||
2226 | { | ||||
2227 | $x10000 = [ 0x1000 ]; $h = 'h3'; | ||||
2228 | } | ||||
2229 | while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() | ||||
2230 | { | ||||
2231 | ($x1, $xr) = _div($c,$x1,$x10000); | ||||
2232 | $es .= unpack($h,pack('V',$xr->[0])); | ||||
2233 | } | ||||
2234 | $es = reverse $es; | ||||
2235 | $es =~ s/^[0]+//; # strip leading zeros | ||||
2236 | '0x' . $es; # return result prepended with 0x | ||||
2237 | } | ||||
2238 | |||||
2239 | sub _as_bin | ||||
2240 | { | ||||
2241 | # convert a decimal number to bin (ref to array, return ref to string) | ||||
2242 | my ($c,$x) = @_; | ||||
2243 | |||||
2244 | # fits into one element (and Perl recent enough), handle also 0b0 case | ||||
2245 | # handle zero case for older Perls | ||||
2246 | if ($] <= 5.005 && @$x == 1 && $x->[0] == 0) | ||||
2247 | { | ||||
2248 | my $t = '0b0'; return $t; | ||||
2249 | } | ||||
2250 | if (@$x == 1 && $] >= 5.006) | ||||
2251 | { | ||||
2252 | my $t = sprintf("0b%b",$x->[0]); | ||||
2253 | return $t; | ||||
2254 | } | ||||
2255 | my $x1 = _copy($c,$x); | ||||
2256 | |||||
2257 | my $es = ''; | ||||
2258 | my ($xr, $b, $x10000); | ||||
2259 | if ($] >= 5.006) | ||||
2260 | { | ||||
2261 | $x10000 = [ 0x10000 ]; $b = 'b16'; | ||||
2262 | } | ||||
2263 | else | ||||
2264 | { | ||||
2265 | $x10000 = [ 0x1000 ]; $b = 'b12'; | ||||
2266 | } | ||||
2267 | while (!(@$x1 == 1 && $x1->[0] == 0)) # _is_zero() | ||||
2268 | { | ||||
2269 | ($x1, $xr) = _div($c,$x1,$x10000); | ||||
2270 | $es .= unpack($b,pack('v',$xr->[0])); | ||||
2271 | } | ||||
2272 | $es = reverse $es; | ||||
2273 | $es =~ s/^[0]+//; # strip leading zeros | ||||
2274 | '0b' . $es; # return result prepended with 0b | ||||
2275 | } | ||||
2276 | |||||
2277 | sub _as_oct | ||||
2278 | { | ||||
2279 | # convert a decimal number to octal (ref to array, return ref to string) | ||||
2280 | my ($c,$x) = @_; | ||||
2281 | |||||
2282 | # fits into one element (handle also 0 case) | ||||
2283 | return sprintf("0%o",$x->[0]) if @$x == 1; | ||||
2284 | |||||
2285 | my $x1 = _copy($c,$x); | ||||
2286 | |||||
2287 | my $es = ''; | ||||
2288 | my $xr; | ||||
2289 | my $x1000 = [ 0100000 ]; | ||||
2290 | while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() | ||||
2291 | { | ||||
2292 | ($x1, $xr) = _div($c,$x1,$x1000); | ||||
2293 | $es .= reverse sprintf("%05o", $xr->[0]); | ||||
2294 | } | ||||
2295 | $es = reverse $es; | ||||
2296 | $es =~ s/^[0]+//; # strip leading zeros | ||||
2297 | '0' . $es; # return result prepended with 0 | ||||
2298 | } | ||||
2299 | |||||
2300 | sub _from_oct | ||||
2301 | { | ||||
2302 | # convert a octal number to decimal (string, return ref to array) | ||||
2303 | my ($c,$os) = @_; | ||||
2304 | |||||
2305 | # for older Perls, play safe | ||||
2306 | my $m = [ 0100000 ]; | ||||
2307 | my $d = 5; # 5 digits at a time | ||||
2308 | |||||
2309 | my $mul = _one(); | ||||
2310 | my $x = _zero(); | ||||
2311 | |||||
2312 | my $len = int( (length($os)-1)/$d ); # $d digit parts, w/o the '0' | ||||
2313 | my $val; my $i = -$d; | ||||
2314 | while ($len >= 0) | ||||
2315 | { | ||||
2316 | $val = substr($os,$i,$d); # get oct digits | ||||
2317 | $val = CORE::oct($val); | ||||
2318 | $i -= $d; $len --; | ||||
2319 | my $adder = [ $val ]; | ||||
2320 | _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0; | ||||
2321 | _mul ($c, $mul, $m ) if $len >= 0; # skip last mul | ||||
2322 | } | ||||
2323 | $x; | ||||
2324 | } | ||||
2325 | |||||
2326 | sub _from_hex | ||||
2327 | { | ||||
2328 | # convert a hex number to decimal (string, return ref to array) | ||||
2329 | my ($c,$hs) = @_; | ||||
2330 | |||||
2331 | my $m = _new($c, 0x10000000); # 28 bit at a time (<32 bit!) | ||||
2332 | my $d = 7; # 7 digits at a time | ||||
2333 | if ($] <= 5.006) | ||||
2334 | { | ||||
2335 | # for older Perls, play safe | ||||
2336 | $m = [ 0x10000 ]; # 16 bit at a time (<32 bit!) | ||||
2337 | $d = 4; # 4 digits at a time | ||||
2338 | } | ||||
2339 | |||||
2340 | my $mul = _one(); | ||||
2341 | my $x = _zero(); | ||||
2342 | |||||
2343 | my $len = int( (length($hs)-2)/$d ); # $d digit parts, w/o the '0x' | ||||
2344 | my $val; my $i = -$d; | ||||
2345 | while ($len >= 0) | ||||
2346 | { | ||||
2347 | $val = substr($hs,$i,$d); # get hex digits | ||||
2348 | $val =~ s/^0x// if $len == 0; # for last part only because | ||||
2349 | $val = CORE::hex($val); # hex does not like wrong chars | ||||
2350 | $i -= $d; $len --; | ||||
2351 | my $adder = [ $val ]; | ||||
2352 | # if the resulting number was to big to fit into one element, create a | ||||
2353 | # two-element version (bug found by Mark Lakata - Thanx!) | ||||
2354 | if (CORE::length($val) > $BASE_LEN) | ||||
2355 | { | ||||
2356 | $adder = _new($c,$val); | ||||
2357 | } | ||||
2358 | _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0; | ||||
2359 | _mul ($c, $mul, $m ) if $len >= 0; # skip last mul | ||||
2360 | } | ||||
2361 | $x; | ||||
2362 | } | ||||
2363 | |||||
2364 | sub _from_bin | ||||
2365 | { | ||||
2366 | # convert a hex number to decimal (string, return ref to array) | ||||
2367 | my ($c,$bs) = @_; | ||||
2368 | |||||
2369 | # instead of converting X (8) bit at a time, it is faster to "convert" the | ||||
2370 | # number to hex, and then call _from_hex. | ||||
2371 | |||||
2372 | my $hs = $bs; | ||||
2373 | $hs =~ s/^[+-]?0b//; # remove sign and 0b | ||||
2374 | my $l = length($hs); # bits | ||||
2375 | $hs = '0' x (8-($l % 8)) . $hs if ($l % 8) != 0; # padd left side w/ 0 | ||||
2376 | my $h = '0x' . unpack('H*', pack ('B*', $hs)); # repack as hex | ||||
2377 | |||||
2378 | $c->_from_hex($h); | ||||
2379 | } | ||||
2380 | |||||
2381 | ############################################################################## | ||||
2382 | # special modulus functions | ||||
2383 | |||||
2384 | sub _modinv | ||||
2385 | { | ||||
2386 | # modular multiplicative inverse | ||||
2387 | my ($c,$x,$y) = @_; | ||||
2388 | |||||
2389 | # modulo zero | ||||
2390 | if (_is_zero($c, $y)) { | ||||
2391 | return (undef, undef); | ||||
2392 | } | ||||
2393 | |||||
2394 | # modulo one | ||||
2395 | if (_is_one($c, $y)) { | ||||
2396 | return (_zero($c), '+'); | ||||
2397 | } | ||||
2398 | |||||
2399 | my $u = _zero($c); | ||||
2400 | my $v = _one($c); | ||||
2401 | my $a = _copy($c,$y); | ||||
2402 | my $b = _copy($c,$x); | ||||
2403 | |||||
2404 | # Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the result | ||||
2405 | # ($u) at the same time. See comments in BigInt for why this works. | ||||
2406 | my $q; | ||||
2407 | my $sign = 1; | ||||
2408 | { | ||||
2409 | ($a, $q, $b) = ($b, _div($c, $a, $b)); # step 1 | ||||
2410 | last if _is_zero($c, $b); | ||||
2411 | |||||
2412 | my $t = _add($c, # step 2: | ||||
2413 | _mul($c, _copy($c, $v), $q) , # t = v * q | ||||
2414 | $u ); # + u | ||||
2415 | $u = $v; # u = v | ||||
2416 | $v = $t; # v = t | ||||
2417 | $sign = -$sign; | ||||
2418 | redo; | ||||
2419 | } | ||||
2420 | |||||
2421 | # if the gcd is not 1, then return NaN | ||||
2422 | return (undef, undef) unless _is_one($c, $a); | ||||
2423 | |||||
2424 | ($v, $sign == 1 ? '+' : '-'); | ||||
2425 | } | ||||
2426 | |||||
2427 | sub _modpow | ||||
2428 | { | ||||
2429 | # modulus of power ($x ** $y) % $z | ||||
2430 | my ($c,$num,$exp,$mod) = @_; | ||||
2431 | |||||
2432 | # a^b (mod 1) = 0 for all a and b | ||||
2433 | if (_is_one($c,$mod)) | ||||
2434 | { | ||||
2435 | @$num = 0; | ||||
2436 | return $num; | ||||
2437 | } | ||||
2438 | |||||
2439 | # 0^a (mod m) = 0 if m != 0, a != 0 | ||||
2440 | # 0^0 (mod m) = 1 if m != 0 | ||||
2441 | if (_is_zero($c, $num)) { | ||||
2442 | if (_is_zero($c, $exp)) { | ||||
2443 | @$num = 1; | ||||
2444 | } else { | ||||
2445 | @$num = 0; | ||||
2446 | } | ||||
2447 | return $num; | ||||
2448 | } | ||||
2449 | |||||
2450 | # $num = _mod($c,$num,$mod); # this does not make it faster | ||||
2451 | |||||
2452 | my $acc = _copy($c,$num); my $t = _one(); | ||||
2453 | |||||
2454 | my $expbin = _as_bin($c,$exp); $expbin =~ s/^0b//; | ||||
2455 | my $len = length($expbin); | ||||
2456 | while (--$len >= 0) | ||||
2457 | { | ||||
2458 | if ( substr($expbin,$len,1) eq '1') # is_odd | ||||
2459 | { | ||||
2460 | _mul($c,$t,$acc); | ||||
2461 | $t = _mod($c,$t,$mod); | ||||
2462 | } | ||||
2463 | _mul($c,$acc,$acc); | ||||
2464 | $acc = _mod($c,$acc,$mod); | ||||
2465 | } | ||||
2466 | @$num = @$t; | ||||
2467 | $num; | ||||
2468 | } | ||||
2469 | |||||
2470 | sub _gcd { | ||||
2471 | # Greatest common divisor. | ||||
2472 | |||||
2473 | my ($c, $x, $y) = @_; | ||||
2474 | |||||
2475 | # gcd(0,0) = 0 | ||||
2476 | # gcd(0,a) = a, if a != 0 | ||||
2477 | |||||
2478 | if (@$x == 1 && $x->[0] == 0) { | ||||
2479 | if (@$y == 1 && $y->[0] == 0) { | ||||
2480 | @$x = 0; | ||||
2481 | } else { | ||||
2482 | @$x = @$y; | ||||
2483 | } | ||||
2484 | return $x; | ||||
2485 | } | ||||
2486 | |||||
2487 | # Until $y is zero ... | ||||
2488 | |||||
2489 | until (@$y == 1 && $y->[0] == 0) { | ||||
2490 | |||||
2491 | # Compute remainder. | ||||
2492 | |||||
2493 | _mod($c, $x, $y); | ||||
2494 | |||||
2495 | # Swap $x and $y. | ||||
2496 | |||||
2497 | my $tmp = [ @$x ]; | ||||
2498 | @$x = @$y; | ||||
2499 | $y = $tmp; # no deref here; that would modify input $y | ||||
2500 | } | ||||
2501 | |||||
2502 | return $x; | ||||
2503 | } | ||||
2504 | |||||
2505 | ############################################################################## | ||||
2506 | ############################################################################## | ||||
2507 | |||||
2508 | 1 | 4µs | 1; | ||
2509 | __END__ | ||||
# spent 6µs within Math::BigInt::Calc::CORE:match which was called 12 times, avg 533ns/call:
# 7 times (4µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 123, avg 500ns/call
# 3 times (1µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 141, avg 367ns/call
# once (2µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 130
# once (300ns+0s) by Math::BigInt::Calc::BEGIN@117 at line 131 | |||||
sub Math::BigInt::Calc::CORE:regcomp; # opcode | |||||
# spent 400ns within Math::BigInt::Calc::api_version which was called:
# once (400ns+0s) by Math::BigInt::import at line 2826 of Math/BigInt.pm |