| Filename | /usr/share/perl/5.20/Math/BigInt/Calc.pm |
| Statements | Executed 307 statements in 9.05ms |
| Calls | P | F | Exclusive Time |
Inclusive Time |
Subroutine |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 127µs | 203µs | Math::BigInt::Calc::BEGIN@117 |
| 10 | 2 | 1 | 50µs | 50µs | Math::BigInt::Calc::CORE:regcomp (opcode) |
| 1 | 1 | 1 | 22µs | 22µs | Math::BigInt::Calc::BEGIN@3 |
| 4 | 4 | 2 | 12µs | 12µs | Math::BigInt::Calc::_new |
| 1 | 1 | 1 | 11µs | 55µs | Math::BigInt::Calc::BEGIN@1909 |
| 1 | 1 | 1 | 11µs | 14µs | Math::BigInt::Calc::BEGIN@137 |
| 1 | 1 | 1 | 11µs | 13µs | Math::BigInt::Calc::BEGIN@475 |
| 1 | 1 | 1 | 11µs | 11µs | Math::BigInt::Calc::_base_len |
| 1 | 1 | 1 | 10µs | 11µs | Math::BigInt::Calc::BEGIN@2186 |
| 1 | 1 | 1 | 8µs | 10µs | Math::BigInt::Calc::BEGIN@2115 |
| 1 | 1 | 1 | 8µs | 10µs | Math::BigInt::Calc::BEGIN@792 |
| 1 | 1 | 1 | 8µs | 10µs | Math::BigInt::Calc::BEGIN@165 |
| 1 | 1 | 1 | 8µs | 9µs | Math::BigInt::Calc::BEGIN@154 |
| 1 | 1 | 1 | 7µs | 8µs | Math::BigInt::Calc::BEGIN@2150 |
| 12 | 4 | 1 | 6µs | 6µs | Math::BigInt::Calc::CORE:match (opcode) |
| 1 | 1 | 1 | 6µs | 18µs | Math::BigInt::Calc::BEGIN@4 |
| 1 | 1 | 1 | 6µs | 6µs | Math::BigInt::Calc::_str |
| 1 | 1 | 1 | 2µs | 2µs | Math::BigInt::Calc::_zero |
| 1 | 1 | 1 | 1µs | 1µs | Math::BigInt::Calc::import |
| 1 | 1 | 1 | 400ns | 400ns | Math::BigInt::Calc::api_version (xsub) |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_1ex |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::__strip_zeros |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_acmp |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_add |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_and |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_as_bin |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_as_hex |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_as_oct |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_check |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_copy |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_dec |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_digit |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_div_use_div |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_div_use_div_64 |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_div_use_mul |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_fac |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_from_bin |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_from_hex |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_from_oct |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_gcd |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_inc |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_is_even |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_is_odd |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_is_one |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_is_ten |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_is_two |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_is_zero |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_len |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_log_int |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_lsft |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_mod |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_modinv |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_modpow |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_mul_use_div |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_mul_use_div_64 |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_mul_use_mul |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_nok |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_num |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_one |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_or |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_pow |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_root |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_rsft |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_sqrt |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_sub |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_ten |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_two |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_xor |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::_zeros |
| 0 | 0 | 0 | 0s | 0s | Math::BigInt::Calc::steps |
| Line | State ments |
Time on line |
Calls | Time in subs |
Code |
|---|---|---|---|---|---|
| 1 | package Math::BigInt::Calc; | ||||
| 2 | |||||
| 3 | 2 | 48µs | 1 | 22µs | # spent 22µs within Math::BigInt::Calc::BEGIN@3 which was called:
# once (22µs+0s) by Math::BigInt::BEGIN@1 at line 3 # spent 22µs making 1 call to Math::BigInt::Calc::BEGIN@3 |
| 4 | 2 | 393µs | 2 | 29µs | # spent 18µs (6+11) within Math::BigInt::Calc::BEGIN@4 which was called:
# once (6µs+11µs) by Math::BigInt::BEGIN@1 at line 4 # spent 18µs making 1 call to Math::BigInt::Calc::BEGIN@4
# spent 12µs making 1 call to strict::import |
| 5 | # use warnings; # do not use warnings for older Perls | ||||
| 6 | |||||
| 7 | 1 | 500ns | our $VERSION = '1.998'; | ||
| 8 | |||||
| 9 | # Package to store unsigned big integers in decimal and do math with them | ||||
| 10 | |||||
| 11 | # Internally the numbers are stored in an array with at least 1 element, no | ||||
| 12 | # leading zero parts (except the first) and in base 1eX where X is determined | ||||
| 13 | # automatically at loading time to be the maximum possible value | ||||
| 14 | |||||
| 15 | # todo: | ||||
| 16 | # - fully remove funky $# stuff in div() (maybe - that code scares me...) | ||||
| 17 | |||||
| 18 | # USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used | ||||
| 19 | # instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms | ||||
| 20 | # BS2000, some Crays need USE_DIV instead. | ||||
| 21 | # The BEGIN block is used to determine which of the two variants gives the | ||||
| 22 | # correct result. | ||||
| 23 | |||||
| 24 | # Beware of things like: | ||||
| 25 | # $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE; | ||||
| 26 | # This works on x86, but fails on ARM (SA1100, iPAQ) due to who knows what | ||||
| 27 | # reasons. So, use this instead (slower, but correct): | ||||
| 28 | # $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car; | ||||
| 29 | |||||
| 30 | ############################################################################## | ||||
| 31 | # global constants, flags and accessory | ||||
| 32 | |||||
| 33 | # announce that we are compatible with MBI v1.83 and up | ||||
| 34 | sub api_version () { 2; } | ||||
| 35 | |||||
| 36 | # constants for easier life | ||||
| 37 | 1 | 100ns | my ($BASE,$BASE_LEN,$RBASE,$MAX_VAL); | ||
| 38 | my ($AND_BITS,$XOR_BITS,$OR_BITS); | ||||
| 39 | my ($AND_MASK,$XOR_MASK,$OR_MASK); | ||||
| 40 | |||||
| 41 | sub _base_len | ||||
| 42 | # spent 11µs within Math::BigInt::Calc::_base_len which was called:
# once (11µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 152 | ||||
| 43 | # Set/get the BASE_LEN and assorted other, connected values. | ||||
| 44 | # Used only by the testsuite, the set variant is used only by the BEGIN | ||||
| 45 | # block below: | ||||
| 46 | 1 | 100ns | shift; | ||
| 47 | |||||
| 48 | 1 | 400ns | my ($b, $int) = @_; | ||
| 49 | 1 | 200ns | if (defined $b) | ||
| 50 | { | ||||
| 51 | # avoid redefinitions | ||||
| 52 | 1 | 2µs | undef &_mul; | ||
| 53 | 1 | 500ns | undef &_div; | ||
| 54 | |||||
| 55 | 1 | 600ns | if ($] >= 5.008 && $int && $b > 7) | ||
| 56 | { | ||||
| 57 | 1 | 300ns | $BASE_LEN = $b; | ||
| 58 | 1 | 2µs | *_mul = \&_mul_use_div_64; | ||
| 59 | 1 | 700ns | *_div = \&_div_use_div_64; | ||
| 60 | 1 | 2µs | $BASE = int("1e".$BASE_LEN); | ||
| 61 | 1 | 800ns | $MAX_VAL = $BASE-1; | ||
| 62 | 1 | 4µs | return $BASE_LEN unless wantarray; | ||
| 63 | return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL,); | ||||
| 64 | } | ||||
| 65 | |||||
| 66 | # find whether we can use mul or div in mul()/div() | ||||
| 67 | $BASE_LEN = $b+1; | ||||
| 68 | my $caught = 0; | ||||
| 69 | while (--$BASE_LEN > 5) | ||||
| 70 | { | ||||
| 71 | $BASE = int("1e".$BASE_LEN); | ||||
| 72 | $RBASE = abs('1e-'.$BASE_LEN); # see USE_MUL | ||||
| 73 | $caught = 0; | ||||
| 74 | $caught += 1 if (int($BASE * $RBASE) != 1); # should be 1 | ||||
| 75 | $caught += 2 if (int($BASE / $BASE) != 1); # should be 1 | ||||
| 76 | last if $caught != 3; | ||||
| 77 | } | ||||
| 78 | $BASE = int("1e".$BASE_LEN); | ||||
| 79 | $RBASE = abs('1e-'.$BASE_LEN); # see USE_MUL | ||||
| 80 | $MAX_VAL = $BASE-1; | ||||
| 81 | |||||
| 82 | # ($caught & 1) != 0 => cannot use MUL | ||||
| 83 | # ($caught & 2) != 0 => cannot use DIV | ||||
| 84 | if ($caught == 2) # 2 | ||||
| 85 | { | ||||
| 86 | # must USE_MUL since we cannot use DIV | ||||
| 87 | *_mul = \&_mul_use_mul; | ||||
| 88 | *_div = \&_div_use_mul; | ||||
| 89 | } | ||||
| 90 | else # 0 or 1 | ||||
| 91 | { | ||||
| 92 | # can USE_DIV instead | ||||
| 93 | *_mul = \&_mul_use_div; | ||||
| 94 | *_div = \&_div_use_div; | ||||
| 95 | } | ||||
| 96 | } | ||||
| 97 | return $BASE_LEN unless wantarray; | ||||
| 98 | return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL); | ||||
| 99 | } | ||||
| 100 | |||||
| 101 | sub _new | ||||
| 102 | # spent 12µs within Math::BigInt::Calc::_new which was called 4 times, avg 3µs/call:
# once (5µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 188
# once (3µs+0s) by Math::BigInt::new at line 642 of Math/BigInt.pm
# once (2µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 189
# once (2µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 190 | ||||
| 103 | # (ref to string) return ref to num_array | ||||
| 104 | # Convert a number from string format (without sign) to internal base | ||||
| 105 | # 1ex format. Assumes normalized value as input. | ||||
| 106 | 4 | 6µs | my $il = length($_[1])-1; | ||
| 107 | |||||
| 108 | # < BASE_LEN due len-1 above | ||||
| 109 | 4 | 12µs | return [ int($_[1]) ] if $il < $BASE_LEN; # shortcut for short numbers | ||
| 110 | |||||
| 111 | # this leaves '00000' instead of int 0 and will be corrected after any op | ||||
| 112 | [ reverse(unpack("a" . ($il % $BASE_LEN+1) | ||||
| 113 | . ("a$BASE_LEN" x ($il / $BASE_LEN)), $_[1])) ]; | ||||
| 114 | } | ||||
| 115 | |||||
| 116 | BEGIN | ||||
| 117 | # spent 203µs (127+77) within Math::BigInt::Calc::BEGIN@117 which was called:
# once (127µs+77µs) by Math::BigInt::BEGIN@1 at line 194 | ||||
| 118 | # from Daniel Pfeiffer: determine largest group of digits that is precisely | ||||
| 119 | # multipliable with itself plus carry | ||||
| 120 | # Test now changed to expect the proper pattern, not a result off by 1 or 2 | ||||
| 121 | 1 | 500ns | my ($e, $num) = 3; # lowest value we will use is 3+1-1 = 3 | ||
| 122 | do | ||||
| 123 | 1 | 71µs | 14 | 40µs | { # spent 37µs making 7 calls to Math::BigInt::Calc::CORE:regcomp, avg 5µs/call
# spent 4µs making 7 calls to Math::BigInt::Calc::CORE:match, avg 500ns/call |
| 124 | 7 | 5µs | $num = ('9' x ++$e) + 0; | ||
| 125 | 7 | 3µs | $num *= $num + 1.0; | ||
| 126 | } while ("$num" =~ /9{$e}0{$e}/); # must be a certain pattern | ||||
| 127 | 1 | 4µs | $e--; # last test failed, so retract one step | ||
| 128 | # the limits below brush the problems with the test above under the rug: | ||||
| 129 | # the test should be able to find the proper $e automatically | ||||
| 130 | 1 | 4µs | 1 | 2µs | $e = 5 if $^O =~ /^uts/; # UTS get's some special treatment # spent 2µs making 1 call to Math::BigInt::Calc::CORE:match |
| 131 | 1 | 2µs | 1 | 300ns | $e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work # spent 300ns making 1 call to Math::BigInt::Calc::CORE:match |
| 132 | # there, but we play safe) | ||||
| 133 | |||||
| 134 | 1 | 200ns | my $int = 0; | ||
| 135 | 1 | 400ns | if ($e > 7) | ||
| 136 | { | ||||
| 137 | 2 | 76µs | 2 | 16µs | # spent 14µs (11+2) within Math::BigInt::Calc::BEGIN@137 which was called:
# once (11µs+2µs) by Math::BigInt::BEGIN@1 at line 137 # spent 14µs making 1 call to Math::BigInt::Calc::BEGIN@137
# spent 2µs making 1 call to integer::import |
| 138 | 1 | 100ns | my $e1 = 7; | ||
| 139 | 1 | 200ns | $num = 7; | ||
| 140 | do | ||||
| 141 | 1 | 24µs | 6 | 14µs | { # spent 13µs making 3 calls to Math::BigInt::Calc::CORE:regcomp, avg 4µs/call
# spent 1µs making 3 calls to Math::BigInt::Calc::CORE:match, avg 367ns/call |
| 142 | 3 | 2µs | $num = ('9' x ++$e1) + 0; | ||
| 143 | 3 | 700ns | $num *= $num + 1; | ||
| 144 | } while ("$num" =~ /9{$e1}0{$e1}/); # must be a certain pattern | ||||
| 145 | 1 | 100ns | $e1--; # last test failed, so retract one step | ||
| 146 | 1 | 300ns | if ($e1 > 7) | ||
| 147 | { | ||||
| 148 | 2 | 300ns | $int = 1; $e = $e1; | ||
| 149 | } | ||||
| 150 | } | ||||
| 151 | |||||
| 152 | 1 | 3µs | 1 | 11µs | __PACKAGE__->_base_len($e,$int); # set and store # spent 11µs making 1 call to Math::BigInt::Calc::_base_len |
| 153 | |||||
| 154 | 2 | 45µs | 2 | 10µs | # spent 9µs (8+1) within Math::BigInt::Calc::BEGIN@154 which was called:
# once (8µs+1µs) by Math::BigInt::BEGIN@1 at line 154 # spent 9µs making 1 call to Math::BigInt::Calc::BEGIN@154
# spent 1µs making 1 call to integer::import |
| 155 | # find out how many bits _and, _or and _xor can take (old default = 16) | ||||
| 156 | # I don't think anybody has yet 128 bit scalars, so let's play safe. | ||||
| 157 | 1 | 2µs | local $^W = 0; # don't warn about 'nonportable number' | ||
| 158 | 3 | 400ns | $AND_BITS = 15; $XOR_BITS = 15; $OR_BITS = 15; | ||
| 159 | |||||
| 160 | # find max bits, we will not go higher than numberofbits that fit into $BASE | ||||
| 161 | # to make _and etc simpler (and faster for smaller, slower for large numbers) | ||||
| 162 | 1 | 100ns | my $max = 16; | ||
| 163 | 15 | 3µs | while (2 ** $max < $BASE) { $max++; } | ||
| 164 | { | ||||
| 165 | 3 | 139µs | 2 | 13µs | # spent 10µs (8+2) within Math::BigInt::Calc::BEGIN@165 which was called:
# once (8µs+2µs) by Math::BigInt::BEGIN@1 at line 165 # spent 10µs making 1 call to Math::BigInt::Calc::BEGIN@165
# spent 2µs making 1 call to integer::unimport |
| 166 | 1 | 200ns | $max = 16 if $] < 5.006; # older Perls might not take >16 too well | ||
| 167 | } | ||||
| 168 | 1 | 100ns | my ($x,$y,$z); | ||
| 169 | 1 | 4µs | do { | ||
| 170 | 15 | 1µs | $AND_BITS++; | ||
| 171 | 30 | 8µs | $x = CORE::oct('0b' . '1' x $AND_BITS); $y = $x & $x; | ||
| 172 | 15 | 3µs | $z = (2 ** $AND_BITS) - 1; | ||
| 173 | } while ($AND_BITS < $max && $x == $z && $y == $x); | ||||
| 174 | 1 | 100ns | $AND_BITS --; # retreat one step | ||
| 175 | 1 | 3µs | do { | ||
| 176 | 15 | 1µs | $XOR_BITS++; | ||
| 177 | 30 | 6µs | $x = CORE::oct('0b' . '1' x $XOR_BITS); $y = $x ^ 0; | ||
| 178 | 15 | 2µs | $z = (2 ** $XOR_BITS) - 1; | ||
| 179 | } while ($XOR_BITS < $max && $x == $z && $y == $x); | ||||
| 180 | 1 | 0s | $XOR_BITS --; # retreat one step | ||
| 181 | 1 | 3µs | do { | ||
| 182 | 15 | 1µs | $OR_BITS++; | ||
| 183 | 30 | 6µs | $x = CORE::oct('0b' . '1' x $OR_BITS); $y = $x | $x; | ||
| 184 | 15 | 2µs | $z = (2 ** $OR_BITS) - 1; | ||
| 185 | } while ($OR_BITS < $max && $x == $z && $y == $x); | ||||
| 186 | 1 | 100ns | $OR_BITS --; # retreat one step | ||
| 187 | |||||
| 188 | 1 | 2µs | 1 | 5µs | $AND_MASK = __PACKAGE__->_new( ( 2 ** $AND_BITS )); # spent 5µs making 1 call to Math::BigInt::Calc::_new |
| 189 | 1 | 1µs | 1 | 2µs | $XOR_MASK = __PACKAGE__->_new( ( 2 ** $XOR_BITS )); # spent 2µs making 1 call to Math::BigInt::Calc::_new |
| 190 | 1 | 1µs | 1 | 2µs | $OR_MASK = __PACKAGE__->_new( ( 2 ** $OR_BITS )); # spent 2µs making 1 call to Math::BigInt::Calc::_new |
| 191 | |||||
| 192 | # We can compute the approximate length no faster than the real length: | ||||
| 193 | 1 | 4µs | *_alen = \&_len; | ||
| 194 | 1 | 792µs | 1 | 203µs | } # spent 203µs making 1 call to Math::BigInt::Calc::BEGIN@117 |
| 195 | |||||
| 196 | ############################################################################### | ||||
| 197 | |||||
| 198 | sub _zero | ||||
| 199 | # spent 2µs within Math::BigInt::Calc::_zero which was called:
# once (2µs+0s) by Math::BigInt::new at line 589 of Math/BigInt.pm | ||||
| 200 | # create a zero | ||||
| 201 | 1 | 4µs | [ 0 ]; | ||
| 202 | } | ||||
| 203 | |||||
| 204 | sub _one | ||||
| 205 | { | ||||
| 206 | # create a one | ||||
| 207 | [ 1 ]; | ||||
| 208 | } | ||||
| 209 | |||||
| 210 | sub _two | ||||
| 211 | { | ||||
| 212 | # create a two (used internally for shifting) | ||||
| 213 | [ 2 ]; | ||||
| 214 | } | ||||
| 215 | |||||
| 216 | sub _ten | ||||
| 217 | { | ||||
| 218 | # create a 10 (used internally for shifting) | ||||
| 219 | [ 10 ]; | ||||
| 220 | } | ||||
| 221 | |||||
| 222 | sub _1ex | ||||
| 223 | { | ||||
| 224 | # create a 1Ex | ||||
| 225 | my $rem = $_[1] % $BASE_LEN; # remainder | ||||
| 226 | my $parts = $_[1] / $BASE_LEN; # parts | ||||
| 227 | |||||
| 228 | # 000000, 000000, 100 | ||||
| 229 | [ (0) x $parts, '1' . ('0' x $rem) ]; | ||||
| 230 | } | ||||
| 231 | |||||
| 232 | sub _copy | ||||
| 233 | { | ||||
| 234 | # make a true copy | ||||
| 235 | [ @{$_[1]} ]; | ||||
| 236 | } | ||||
| 237 | |||||
| 238 | # catch and throw away | ||||
| 239 | 1 | 4µs | # spent 1µs within Math::BigInt::Calc::import which was called:
# once (1µs+0s) by Math::BigInt::BEGIN@1 at line 1 of (eval 48)[Math/BigInt.pm:2820] | ||
| 240 | |||||
| 241 | ############################################################################## | ||||
| 242 | # convert back to string and number | ||||
| 243 | |||||
| 244 | sub _str | ||||
| 245 | # spent 6µs within Math::BigInt::Calc::_str which was called:
# once (6µs+0s) by Math::BigInt::bstr at line 836 of Math/BigInt.pm | ||||
| 246 | # (ref to BINT) return num_str | ||||
| 247 | # Convert number from internal base 100000 format to string format. | ||||
| 248 | # internal format is always normalized (no leading zeros, "-0" => "+0") | ||||
| 249 | 1 | 400ns | my $ar = $_[1]; | ||
| 250 | |||||
| 251 | 1 | 300ns | my $l = scalar @$ar; # number of parts | ||
| 252 | 1 | 200ns | if ($l < 1) # should not happen | ||
| 253 | { | ||||
| 254 | require Carp; | ||||
| 255 | Carp::croak("$_[1] has no elements"); | ||||
| 256 | } | ||||
| 257 | |||||
| 258 | 1 | 200ns | my $ret = ""; | ||
| 259 | # handle first one different to strip leading zeros from it (there are no | ||||
| 260 | # leading zero parts in internal representation) | ||||
| 261 | 3 | 1µs | $l --; $ret .= int($ar->[$l]); $l--; | ||
| 262 | # Interestingly, the pre-padd method uses more time | ||||
| 263 | # the old grep variant takes longer (14 vs. 10 sec) | ||||
| 264 | 1 | 1µs | my $z = '0' x ($BASE_LEN-1); | ||
| 265 | 1 | 800ns | while ($l >= 0) | ||
| 266 | { | ||||
| 267 | $ret .= substr($z.$ar->[$l],-$BASE_LEN); # fastest way I could think of | ||||
| 268 | $l--; | ||||
| 269 | } | ||||
| 270 | 1 | 2µs | $ret; | ||
| 271 | } | ||||
| 272 | |||||
| 273 | sub _num | ||||
| 274 | { | ||||
| 275 | # Make a Perl scalar number (int/float) from a BigInt object. | ||||
| 276 | my $x = $_[1]; | ||||
| 277 | |||||
| 278 | return 0 + $x->[0] if scalar @$x == 1; # below $BASE | ||||
| 279 | |||||
| 280 | # Start with the most significant element and work towards the least | ||||
| 281 | # significant element. Avoid multiplying "inf" (which happens if the number | ||||
| 282 | # overflows) with "0" (if there are zero elements in $x) since this gives | ||||
| 283 | # "nan" which propagates to the output. | ||||
| 284 | |||||
| 285 | my $num = 0; | ||||
| 286 | for (my $i = $#$x ; $i >= 0 ; --$i) { | ||||
| 287 | $num *= $BASE; | ||||
| 288 | $num += $x -> [$i]; | ||||
| 289 | } | ||||
| 290 | return $num; | ||||
| 291 | } | ||||
| 292 | |||||
| 293 | ############################################################################## | ||||
| 294 | # actual math code | ||||
| 295 | |||||
| 296 | sub _add | ||||
| 297 | { | ||||
| 298 | # (ref to int_num_array, ref to int_num_array) | ||||
| 299 | # routine to add two base 1eX numbers | ||||
| 300 | # stolen from Knuth Vol 2 Algorithm A pg 231 | ||||
| 301 | # there are separate routines to add and sub as per Knuth pg 233 | ||||
| 302 | # This routine modifies array x, but not y. | ||||
| 303 | |||||
| 304 | my ($c,$x,$y) = @_; | ||||
| 305 | |||||
| 306 | return $x if (@$y == 1) && $y->[0] == 0; # $x + 0 => $x | ||||
| 307 | if ((@$x == 1) && $x->[0] == 0) # 0 + $y => $y->copy | ||||
| 308 | { | ||||
| 309 | # twice as slow as $x = [ @$y ], but nec. to retain $x as ref :( | ||||
| 310 | @$x = @$y; return $x; | ||||
| 311 | } | ||||
| 312 | |||||
| 313 | # for each in Y, add Y to X and carry. If after that, something is left in | ||||
| 314 | # X, foreach in X add carry to X and then return X, carry | ||||
| 315 | # Trades one "$j++" for having to shift arrays | ||||
| 316 | my $i; my $car = 0; my $j = 0; | ||||
| 317 | for $i (@$y) | ||||
| 318 | { | ||||
| 319 | $x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0; | ||||
| 320 | $j++; | ||||
| 321 | } | ||||
| 322 | while ($car != 0) | ||||
| 323 | { | ||||
| 324 | $x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0; $j++; | ||||
| 325 | } | ||||
| 326 | $x; | ||||
| 327 | } | ||||
| 328 | |||||
| 329 | sub _inc | ||||
| 330 | { | ||||
| 331 | # (ref to int_num_array, ref to int_num_array) | ||||
| 332 | # Add 1 to $x, modify $x in place | ||||
| 333 | my ($c,$x) = @_; | ||||
| 334 | |||||
| 335 | for my $i (@$x) | ||||
| 336 | { | ||||
| 337 | return $x if (($i += 1) < $BASE); # early out | ||||
| 338 | $i = 0; # overflow, next | ||||
| 339 | } | ||||
| 340 | push @$x,1 if (($x->[-1] || 0) == 0); # last overflowed, so extend | ||||
| 341 | $x; | ||||
| 342 | } | ||||
| 343 | |||||
| 344 | sub _dec | ||||
| 345 | { | ||||
| 346 | # (ref to int_num_array, ref to int_num_array) | ||||
| 347 | # Sub 1 from $x, modify $x in place | ||||
| 348 | my ($c,$x) = @_; | ||||
| 349 | |||||
| 350 | my $MAX = $BASE-1; # since MAX_VAL based on BASE | ||||
| 351 | for my $i (@$x) | ||||
| 352 | { | ||||
| 353 | last if (($i -= 1) >= 0); # early out | ||||
| 354 | $i = $MAX; # underflow, next | ||||
| 355 | } | ||||
| 356 | pop @$x if $x->[-1] == 0 && @$x > 1; # last underflowed (but leave 0) | ||||
| 357 | $x; | ||||
| 358 | } | ||||
| 359 | |||||
| 360 | sub _sub | ||||
| 361 | { | ||||
| 362 | # (ref to int_num_array, ref to int_num_array, swap) | ||||
| 363 | # subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y | ||||
| 364 | # subtract Y from X by modifying x in place | ||||
| 365 | my ($c,$sx,$sy,$s) = @_; | ||||
| 366 | |||||
| 367 | my $car = 0; my $i; my $j = 0; | ||||
| 368 | if (!$s) | ||||
| 369 | { | ||||
| 370 | for $i (@$sx) | ||||
| 371 | { | ||||
| 372 | last unless defined $sy->[$j] || $car; | ||||
| 373 | $i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0); $j++; | ||||
| 374 | } | ||||
| 375 | # might leave leading zeros, so fix that | ||||
| 376 | return __strip_zeros($sx); | ||||
| 377 | } | ||||
| 378 | for $i (@$sx) | ||||
| 379 | { | ||||
| 380 | # we can't do an early out if $x is < than $y, since we | ||||
| 381 | # need to copy the high chunks from $y. Found by Bob Mathews. | ||||
| 382 | #last unless defined $sy->[$j] || $car; | ||||
| 383 | $sy->[$j] += $BASE | ||||
| 384 | if $car = (($sy->[$j] = $i-($sy->[$j]||0) - $car) < 0); | ||||
| 385 | $j++; | ||||
| 386 | } | ||||
| 387 | # might leave leading zeros, so fix that | ||||
| 388 | __strip_zeros($sy); | ||||
| 389 | } | ||||
| 390 | |||||
| 391 | sub _mul_use_mul | ||||
| 392 | { | ||||
| 393 | # (ref to int_num_array, ref to int_num_array) | ||||
| 394 | # multiply two numbers in internal representation | ||||
| 395 | # modifies first arg, second need not be different from first | ||||
| 396 | my ($c,$xv,$yv) = @_; | ||||
| 397 | |||||
| 398 | if (@$yv == 1) | ||||
| 399 | { | ||||
| 400 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
| 401 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
| 402 | if (@$xv == 1) | ||||
| 403 | { | ||||
| 404 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
| 405 | { | ||||
| 406 | $xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $BASE; | ||||
| 407 | }; | ||||
| 408 | return $xv; | ||||
| 409 | } | ||||
| 410 | # $x * 0 => 0 | ||||
| 411 | if ($yv->[0] == 0) | ||||
| 412 | { | ||||
| 413 | @$xv = (0); | ||||
| 414 | return $xv; | ||||
| 415 | } | ||||
| 416 | # multiply a large number a by a single element one, so speed up | ||||
| 417 | my $y = $yv->[0]; my $car = 0; | ||||
| 418 | foreach my $i (@$xv) | ||||
| 419 | { | ||||
| 420 | $i = $i * $y + $car; $car = int($i * $RBASE); $i -= $car * $BASE; | ||||
| 421 | } | ||||
| 422 | push @$xv, $car if $car != 0; | ||||
| 423 | return $xv; | ||||
| 424 | } | ||||
| 425 | # shortcut for result $x == 0 => result = 0 | ||||
| 426 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
| 427 | |||||
| 428 | # since multiplying $x with $x fails, make copy in this case | ||||
| 429 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
| 430 | |||||
| 431 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
| 432 | |||||
| 433 | for $xi (@$xv) | ||||
| 434 | { | ||||
| 435 | $car = 0; $cty = 0; | ||||
| 436 | |||||
| 437 | # slow variant | ||||
| 438 | # for $yi (@$yv) | ||||
| 439 | # { | ||||
| 440 | # $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
| 441 | # $prod[$cty++] = | ||||
| 442 | # $prod - ($car = int($prod * RBASE)) * $BASE; # see USE_MUL | ||||
| 443 | # } | ||||
| 444 | # $prod[$cty] += $car if $car; # need really to check for 0? | ||||
| 445 | # $xi = shift @prod; | ||||
| 446 | |||||
| 447 | # faster variant | ||||
| 448 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
| 449 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
| 450 | for $yi (@$yv) | ||||
| 451 | { | ||||
| 452 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
| 453 | ## this is actually a tad slower | ||||
| 454 | ## $prod = $prod[$cty]; $prod += ($car + $xi * $yi); # no ||0 here | ||||
| 455 | $prod[$cty++] = | ||||
| 456 | $prod - ($car = int($prod * $RBASE)) * $BASE; # see USE_MUL | ||||
| 457 | } | ||||
| 458 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
| 459 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
| 460 | } | ||||
| 461 | push @$xv, @prod; | ||||
| 462 | # can't have leading zeros | ||||
| 463 | # __strip_zeros($xv); | ||||
| 464 | $xv; | ||||
| 465 | } | ||||
| 466 | |||||
| 467 | sub _mul_use_div_64 | ||||
| 468 | { | ||||
| 469 | # (ref to int_num_array, ref to int_num_array) | ||||
| 470 | # multiply two numbers in internal representation | ||||
| 471 | # modifies first arg, second need not be different from first | ||||
| 472 | # works for 64 bit integer with "use integer" | ||||
| 473 | my ($c,$xv,$yv) = @_; | ||||
| 474 | |||||
| 475 | 2 | 1.06ms | 2 | 14µs | # spent 13µs (11+2) within Math::BigInt::Calc::BEGIN@475 which was called:
# once (11µs+2µs) by Math::BigInt::BEGIN@1 at line 475 # spent 13µs making 1 call to Math::BigInt::Calc::BEGIN@475
# spent 2µs making 1 call to integer::import |
| 476 | if (@$yv == 1) | ||||
| 477 | { | ||||
| 478 | # shortcut for two small numbers, also handles $x == 0 | ||||
| 479 | if (@$xv == 1) | ||||
| 480 | { | ||||
| 481 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
| 482 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
| 483 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
| 484 | { | ||||
| 485 | $xv->[0] = | ||||
| 486 | $xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE; | ||||
| 487 | }; | ||||
| 488 | return $xv; | ||||
| 489 | } | ||||
| 490 | # $x * 0 => 0 | ||||
| 491 | if ($yv->[0] == 0) | ||||
| 492 | { | ||||
| 493 | @$xv = (0); | ||||
| 494 | return $xv; | ||||
| 495 | } | ||||
| 496 | # multiply a large number a by a single element one, so speed up | ||||
| 497 | my $y = $yv->[0]; my $car = 0; | ||||
| 498 | foreach my $i (@$xv) | ||||
| 499 | { | ||||
| 500 | #$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE; | ||||
| 501 | $i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE; | ||||
| 502 | } | ||||
| 503 | push @$xv, $car if $car != 0; | ||||
| 504 | return $xv; | ||||
| 505 | } | ||||
| 506 | # shortcut for result $x == 0 => result = 0 | ||||
| 507 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
| 508 | |||||
| 509 | # since multiplying $x with $x fails, make copy in this case | ||||
| 510 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
| 511 | |||||
| 512 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
| 513 | for $xi (@$xv) | ||||
| 514 | { | ||||
| 515 | $car = 0; $cty = 0; | ||||
| 516 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
| 517 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
| 518 | for $yi (@$yv) | ||||
| 519 | { | ||||
| 520 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
| 521 | $prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE; | ||||
| 522 | } | ||||
| 523 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
| 524 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
| 525 | } | ||||
| 526 | push @$xv, @prod; | ||||
| 527 | $xv; | ||||
| 528 | } | ||||
| 529 | |||||
| 530 | sub _mul_use_div | ||||
| 531 | { | ||||
| 532 | # (ref to int_num_array, ref to int_num_array) | ||||
| 533 | # multiply two numbers in internal representation | ||||
| 534 | # modifies first arg, second need not be different from first | ||||
| 535 | my ($c,$xv,$yv) = @_; | ||||
| 536 | |||||
| 537 | if (@$yv == 1) | ||||
| 538 | { | ||||
| 539 | # shortcut for two small numbers, also handles $x == 0 | ||||
| 540 | if (@$xv == 1) | ||||
| 541 | { | ||||
| 542 | # shortcut for two very short numbers (improved by Nathan Zook) | ||||
| 543 | # works also if xv and yv are the same reference, and handles also $x == 0 | ||||
| 544 | if (($xv->[0] *= $yv->[0]) >= $BASE) | ||||
| 545 | { | ||||
| 546 | $xv->[0] = | ||||
| 547 | $xv->[0] - ($xv->[1] = int($xv->[0] / $BASE)) * $BASE; | ||||
| 548 | }; | ||||
| 549 | return $xv; | ||||
| 550 | } | ||||
| 551 | # $x * 0 => 0 | ||||
| 552 | if ($yv->[0] == 0) | ||||
| 553 | { | ||||
| 554 | @$xv = (0); | ||||
| 555 | return $xv; | ||||
| 556 | } | ||||
| 557 | # multiply a large number a by a single element one, so speed up | ||||
| 558 | my $y = $yv->[0]; my $car = 0; | ||||
| 559 | foreach my $i (@$xv) | ||||
| 560 | { | ||||
| 561 | $i = $i * $y + $car; $car = int($i / $BASE); $i -= $car * $BASE; | ||||
| 562 | # This (together with use integer;) does not work on 32-bit Perls | ||||
| 563 | #$i = $i * $y + $car; $i -= ($car = $i / $BASE) * $BASE; | ||||
| 564 | } | ||||
| 565 | push @$xv, $car if $car != 0; | ||||
| 566 | return $xv; | ||||
| 567 | } | ||||
| 568 | # shortcut for result $x == 0 => result = 0 | ||||
| 569 | return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) ); | ||||
| 570 | |||||
| 571 | # since multiplying $x with $x fails, make copy in this case | ||||
| 572 | $yv = [@$xv] if $xv == $yv; # same references? | ||||
| 573 | |||||
| 574 | my @prod = (); my ($prod,$car,$cty,$xi,$yi); | ||||
| 575 | for $xi (@$xv) | ||||
| 576 | { | ||||
| 577 | $car = 0; $cty = 0; | ||||
| 578 | # looping through this if $xi == 0 is silly - so optimize it away! | ||||
| 579 | $xi = (shift @prod || 0), next if $xi == 0; | ||||
| 580 | for $yi (@$yv) | ||||
| 581 | { | ||||
| 582 | $prod = $xi * $yi + ($prod[$cty] || 0) + $car; | ||||
| 583 | $prod[$cty++] = $prod - ($car = int($prod / $BASE)) * $BASE; | ||||
| 584 | } | ||||
| 585 | $prod[$cty] += $car if $car; # need really to check for 0? | ||||
| 586 | $xi = shift @prod || 0; # || 0 makes v5.005_3 happy | ||||
| 587 | } | ||||
| 588 | push @$xv, @prod; | ||||
| 589 | # can't have leading zeros | ||||
| 590 | # __strip_zeros($xv); | ||||
| 591 | $xv; | ||||
| 592 | } | ||||
| 593 | |||||
| 594 | sub _div_use_mul | ||||
| 595 | { | ||||
| 596 | # ref to array, ref to array, modify first array and return remainder if | ||||
| 597 | # in list context | ||||
| 598 | |||||
| 599 | # see comments in _div_use_div() for more explanations | ||||
| 600 | |||||
| 601 | my ($c,$x,$yorg) = @_; | ||||
| 602 | |||||
| 603 | # the general div algorithm here is about O(N*N) and thus quite slow, so | ||||
| 604 | # we first check for some special cases and use shortcuts to handle them. | ||||
| 605 | |||||
| 606 | # This works, because we store the numbers in a chunked format where each | ||||
| 607 | # element contains 5..7 digits (depending on system). | ||||
| 608 | |||||
| 609 | # if both numbers have only one element: | ||||
| 610 | if (@$x == 1 && @$yorg == 1) | ||||
| 611 | { | ||||
| 612 | # shortcut, $yorg and $x are two small numbers | ||||
| 613 | if (wantarray) | ||||
| 614 | { | ||||
| 615 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
| 616 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
| 617 | return ($x,$r); | ||||
| 618 | } | ||||
| 619 | else | ||||
| 620 | { | ||||
| 621 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
| 622 | return $x; | ||||
| 623 | } | ||||
| 624 | } | ||||
| 625 | |||||
| 626 | # if x has more than one, but y has only one element: | ||||
| 627 | if (@$yorg == 1) | ||||
| 628 | { | ||||
| 629 | my $rem; | ||||
| 630 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
| 631 | |||||
| 632 | # shortcut, $y is < $BASE | ||||
| 633 | my $j = scalar @$x; my $r = 0; | ||||
| 634 | my $y = $yorg->[0]; my $b; | ||||
| 635 | while ($j-- > 0) | ||||
| 636 | { | ||||
| 637 | $b = $r * $BASE + $x->[$j]; | ||||
| 638 | $x->[$j] = int($b/$y); | ||||
| 639 | $r = $b % $y; | ||||
| 640 | } | ||||
| 641 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
| 642 | return ($x,$rem) if wantarray; | ||||
| 643 | return $x; | ||||
| 644 | } | ||||
| 645 | |||||
| 646 | # now x and y have more than one element | ||||
| 647 | |||||
| 648 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
| 649 | if (@$yorg > @$x) | ||||
| 650 | { | ||||
| 651 | my $rem; | ||||
| 652 | $rem = [@$x] if wantarray; # make copy | ||||
| 653 | splice (@$x,1); # keep ref to original array | ||||
| 654 | $x->[0] = 0; # set to 0 | ||||
| 655 | return ($x,$rem) if wantarray; # including remainder? | ||||
| 656 | return $x; # only x, which is [0] now | ||||
| 657 | } | ||||
| 658 | # check whether the numbers have the same number of elements, in that case | ||||
| 659 | # the result will fit into one element and can be computed efficiently | ||||
| 660 | if (@$yorg == @$x) | ||||
| 661 | { | ||||
| 662 | my $rem; | ||||
| 663 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
| 664 | # the one from $x), the result will also be 0: | ||||
| 665 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
| 666 | { | ||||
| 667 | $rem = [@$x] if wantarray; # make copy | ||||
| 668 | splice (@$x,1); # keep ref to org array | ||||
| 669 | $x->[0] = 0; # set to 0 | ||||
| 670 | return ($x,$rem) if wantarray; # including remainder? | ||||
| 671 | return $x; | ||||
| 672 | } | ||||
| 673 | # now calculate $x / $yorg | ||||
| 674 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
| 675 | { | ||||
| 676 | # same length, so make full compare | ||||
| 677 | |||||
| 678 | my $a = 0; my $j = scalar @$x - 1; | ||||
| 679 | # manual way (abort if unequal, good for early ne) | ||||
| 680 | while ($j >= 0) | ||||
| 681 | { | ||||
| 682 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
| 683 | } | ||||
| 684 | # $a contains the result of the compare between X and Y | ||||
| 685 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
| 686 | if ($a <= 0) | ||||
| 687 | { | ||||
| 688 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
| 689 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
| 690 | splice(@$x,1); # keep single element | ||||
| 691 | $x->[0] = 0; # if $a < 0 | ||||
| 692 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
| 693 | return ($x,$rem) if wantarray; | ||||
| 694 | return $x; | ||||
| 695 | } | ||||
| 696 | # $x >= $y, so proceed normally | ||||
| 697 | } | ||||
| 698 | } | ||||
| 699 | |||||
| 700 | # all other cases: | ||||
| 701 | |||||
| 702 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
| 703 | |||||
| 704 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
| 705 | |||||
| 706 | $car = $bar = $prd = 0; | ||||
| 707 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
| 708 | { | ||||
| 709 | for $xi (@$x) | ||||
| 710 | { | ||||
| 711 | $xi = $xi * $dd + $car; | ||||
| 712 | $xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL | ||||
| 713 | } | ||||
| 714 | push(@$x, $car); $car = 0; | ||||
| 715 | for $yi (@$y) | ||||
| 716 | { | ||||
| 717 | $yi = $yi * $dd + $car; | ||||
| 718 | $yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL | ||||
| 719 | } | ||||
| 720 | } | ||||
| 721 | else | ||||
| 722 | { | ||||
| 723 | push(@$x, 0); | ||||
| 724 | } | ||||
| 725 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
| 726 | $v2 = 0 unless $v2; | ||||
| 727 | while ($#$x > $#$y) | ||||
| 728 | { | ||||
| 729 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
| 730 | $u2 = 0 unless $u2; | ||||
| 731 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
| 732 | # if $v1 == 0; | ||||
| 733 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
| 734 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
| 735 | if ($q) | ||||
| 736 | { | ||||
| 737 | ($car, $bar) = (0,0); | ||||
| 738 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
| 739 | { | ||||
| 740 | $prd = $q * $y->[$yi] + $car; | ||||
| 741 | $prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL | ||||
| 742 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
| 743 | } | ||||
| 744 | if ($x->[-1] < $car + $bar) | ||||
| 745 | { | ||||
| 746 | $car = 0; --$q; | ||||
| 747 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
| 748 | { | ||||
| 749 | $x->[$xi] -= $BASE | ||||
| 750 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
| 751 | } | ||||
| 752 | } | ||||
| 753 | } | ||||
| 754 | pop(@$x); | ||||
| 755 | unshift(@q, $q); | ||||
| 756 | } | ||||
| 757 | if (wantarray) | ||||
| 758 | { | ||||
| 759 | @d = (); | ||||
| 760 | if ($dd != 1) | ||||
| 761 | { | ||||
| 762 | $car = 0; | ||||
| 763 | for $xi (reverse @$x) | ||||
| 764 | { | ||||
| 765 | $prd = $car * $BASE + $xi; | ||||
| 766 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL | ||||
| 767 | unshift(@d, $tmp); | ||||
| 768 | } | ||||
| 769 | } | ||||
| 770 | else | ||||
| 771 | { | ||||
| 772 | @d = @$x; | ||||
| 773 | } | ||||
| 774 | @$x = @q; | ||||
| 775 | my $d = \@d; | ||||
| 776 | __strip_zeros($x); | ||||
| 777 | __strip_zeros($d); | ||||
| 778 | return ($x,$d); | ||||
| 779 | } | ||||
| 780 | @$x = @q; | ||||
| 781 | __strip_zeros($x); | ||||
| 782 | $x; | ||||
| 783 | } | ||||
| 784 | |||||
| 785 | sub _div_use_div_64 | ||||
| 786 | { | ||||
| 787 | # ref to array, ref to array, modify first array and return remainder if | ||||
| 788 | # in list context | ||||
| 789 | # This version works on 64 bit integers | ||||
| 790 | my ($c,$x,$yorg) = @_; | ||||
| 791 | |||||
| 792 | 2 | 3.79ms | 2 | 11µs | # spent 10µs (8+2) within Math::BigInt::Calc::BEGIN@792 which was called:
# once (8µs+2µs) by Math::BigInt::BEGIN@1 at line 792 # spent 10µs making 1 call to Math::BigInt::Calc::BEGIN@792
# spent 2µs making 1 call to integer::import |
| 793 | # the general div algorithm here is about O(N*N) and thus quite slow, so | ||||
| 794 | # we first check for some special cases and use shortcuts to handle them. | ||||
| 795 | |||||
| 796 | # This works, because we store the numbers in a chunked format where each | ||||
| 797 | # element contains 5..7 digits (depending on system). | ||||
| 798 | |||||
| 799 | # if both numbers have only one element: | ||||
| 800 | if (@$x == 1 && @$yorg == 1) | ||||
| 801 | { | ||||
| 802 | # shortcut, $yorg and $x are two small numbers | ||||
| 803 | if (wantarray) | ||||
| 804 | { | ||||
| 805 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
| 806 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
| 807 | return ($x,$r); | ||||
| 808 | } | ||||
| 809 | else | ||||
| 810 | { | ||||
| 811 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
| 812 | return $x; | ||||
| 813 | } | ||||
| 814 | } | ||||
| 815 | # if x has more than one, but y has only one element: | ||||
| 816 | if (@$yorg == 1) | ||||
| 817 | { | ||||
| 818 | my $rem; | ||||
| 819 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
| 820 | |||||
| 821 | # shortcut, $y is < $BASE | ||||
| 822 | my $j = scalar @$x; my $r = 0; | ||||
| 823 | my $y = $yorg->[0]; my $b; | ||||
| 824 | while ($j-- > 0) | ||||
| 825 | { | ||||
| 826 | $b = $r * $BASE + $x->[$j]; | ||||
| 827 | $x->[$j] = int($b/$y); | ||||
| 828 | $r = $b % $y; | ||||
| 829 | } | ||||
| 830 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
| 831 | return ($x,$rem) if wantarray; | ||||
| 832 | return $x; | ||||
| 833 | } | ||||
| 834 | # now x and y have more than one element | ||||
| 835 | |||||
| 836 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
| 837 | if (@$yorg > @$x) | ||||
| 838 | { | ||||
| 839 | my $rem; | ||||
| 840 | $rem = [@$x] if wantarray; # make copy | ||||
| 841 | splice (@$x,1); # keep ref to original array | ||||
| 842 | $x->[0] = 0; # set to 0 | ||||
| 843 | return ($x,$rem) if wantarray; # including remainder? | ||||
| 844 | return $x; # only x, which is [0] now | ||||
| 845 | } | ||||
| 846 | # check whether the numbers have the same number of elements, in that case | ||||
| 847 | # the result will fit into one element and can be computed efficiently | ||||
| 848 | if (@$yorg == @$x) | ||||
| 849 | { | ||||
| 850 | my $rem; | ||||
| 851 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
| 852 | # the one from $x), the result will also be 0: | ||||
| 853 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
| 854 | { | ||||
| 855 | $rem = [@$x] if wantarray; # make copy | ||||
| 856 | splice (@$x,1); # keep ref to org array | ||||
| 857 | $x->[0] = 0; # set to 0 | ||||
| 858 | return ($x,$rem) if wantarray; # including remainder? | ||||
| 859 | return $x; | ||||
| 860 | } | ||||
| 861 | # now calculate $x / $yorg | ||||
| 862 | |||||
| 863 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
| 864 | { | ||||
| 865 | # same length, so make full compare | ||||
| 866 | |||||
| 867 | my $a = 0; my $j = scalar @$x - 1; | ||||
| 868 | # manual way (abort if unequal, good for early ne) | ||||
| 869 | while ($j >= 0) | ||||
| 870 | { | ||||
| 871 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
| 872 | } | ||||
| 873 | # $a contains the result of the compare between X and Y | ||||
| 874 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
| 875 | if ($a <= 0) | ||||
| 876 | { | ||||
| 877 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
| 878 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
| 879 | splice(@$x,1); # keep single element | ||||
| 880 | $x->[0] = 0; # if $a < 0 | ||||
| 881 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
| 882 | return ($x,$rem) if wantarray; # including remainder? | ||||
| 883 | return $x; | ||||
| 884 | } | ||||
| 885 | # $x >= $y, so proceed normally | ||||
| 886 | |||||
| 887 | } | ||||
| 888 | } | ||||
| 889 | |||||
| 890 | # all other cases: | ||||
| 891 | |||||
| 892 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
| 893 | |||||
| 894 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
| 895 | |||||
| 896 | $car = $bar = $prd = 0; | ||||
| 897 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
| 898 | { | ||||
| 899 | for $xi (@$x) | ||||
| 900 | { | ||||
| 901 | $xi = $xi * $dd + $car; | ||||
| 902 | $xi -= ($car = int($xi / $BASE)) * $BASE; | ||||
| 903 | } | ||||
| 904 | push(@$x, $car); $car = 0; | ||||
| 905 | for $yi (@$y) | ||||
| 906 | { | ||||
| 907 | $yi = $yi * $dd + $car; | ||||
| 908 | $yi -= ($car = int($yi / $BASE)) * $BASE; | ||||
| 909 | } | ||||
| 910 | } | ||||
| 911 | else | ||||
| 912 | { | ||||
| 913 | push(@$x, 0); | ||||
| 914 | } | ||||
| 915 | |||||
| 916 | # @q will accumulate the final result, $q contains the current computed | ||||
| 917 | # part of the final result | ||||
| 918 | |||||
| 919 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
| 920 | $v2 = 0 unless $v2; | ||||
| 921 | while ($#$x > $#$y) | ||||
| 922 | { | ||||
| 923 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
| 924 | $u2 = 0 unless $u2; | ||||
| 925 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
| 926 | # if $v1 == 0; | ||||
| 927 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
| 928 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
| 929 | if ($q) | ||||
| 930 | { | ||||
| 931 | ($car, $bar) = (0,0); | ||||
| 932 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
| 933 | { | ||||
| 934 | $prd = $q * $y->[$yi] + $car; | ||||
| 935 | $prd -= ($car = int($prd / $BASE)) * $BASE; | ||||
| 936 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
| 937 | } | ||||
| 938 | if ($x->[-1] < $car + $bar) | ||||
| 939 | { | ||||
| 940 | $car = 0; --$q; | ||||
| 941 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
| 942 | { | ||||
| 943 | $x->[$xi] -= $BASE | ||||
| 944 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
| 945 | } | ||||
| 946 | } | ||||
| 947 | } | ||||
| 948 | pop(@$x); unshift(@q, $q); | ||||
| 949 | } | ||||
| 950 | if (wantarray) | ||||
| 951 | { | ||||
| 952 | @d = (); | ||||
| 953 | if ($dd != 1) | ||||
| 954 | { | ||||
| 955 | $car = 0; | ||||
| 956 | for $xi (reverse @$x) | ||||
| 957 | { | ||||
| 958 | $prd = $car * $BASE + $xi; | ||||
| 959 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; | ||||
| 960 | unshift(@d, $tmp); | ||||
| 961 | } | ||||
| 962 | } | ||||
| 963 | else | ||||
| 964 | { | ||||
| 965 | @d = @$x; | ||||
| 966 | } | ||||
| 967 | @$x = @q; | ||||
| 968 | my $d = \@d; | ||||
| 969 | __strip_zeros($x); | ||||
| 970 | __strip_zeros($d); | ||||
| 971 | return ($x,$d); | ||||
| 972 | } | ||||
| 973 | @$x = @q; | ||||
| 974 | __strip_zeros($x); | ||||
| 975 | $x; | ||||
| 976 | } | ||||
| 977 | |||||
| 978 | sub _div_use_div | ||||
| 979 | { | ||||
| 980 | # ref to array, ref to array, modify first array and return remainder if | ||||
| 981 | # in list context | ||||
| 982 | my ($c,$x,$yorg) = @_; | ||||
| 983 | |||||
| 984 | # the general div algorithm here is about O(N*N) and thus quite slow, so | ||||
| 985 | # we first check for some special cases and use shortcuts to handle them. | ||||
| 986 | |||||
| 987 | # This works, because we store the numbers in a chunked format where each | ||||
| 988 | # element contains 5..7 digits (depending on system). | ||||
| 989 | |||||
| 990 | # if both numbers have only one element: | ||||
| 991 | if (@$x == 1 && @$yorg == 1) | ||||
| 992 | { | ||||
| 993 | # shortcut, $yorg and $x are two small numbers | ||||
| 994 | if (wantarray) | ||||
| 995 | { | ||||
| 996 | my $r = [ $x->[0] % $yorg->[0] ]; | ||||
| 997 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
| 998 | return ($x,$r); | ||||
| 999 | } | ||||
| 1000 | else | ||||
| 1001 | { | ||||
| 1002 | $x->[0] = int($x->[0] / $yorg->[0]); | ||||
| 1003 | return $x; | ||||
| 1004 | } | ||||
| 1005 | } | ||||
| 1006 | # if x has more than one, but y has only one element: | ||||
| 1007 | if (@$yorg == 1) | ||||
| 1008 | { | ||||
| 1009 | my $rem; | ||||
| 1010 | $rem = _mod($c,[ @$x ],$yorg) if wantarray; | ||||
| 1011 | |||||
| 1012 | # shortcut, $y is < $BASE | ||||
| 1013 | my $j = scalar @$x; my $r = 0; | ||||
| 1014 | my $y = $yorg->[0]; my $b; | ||||
| 1015 | while ($j-- > 0) | ||||
| 1016 | { | ||||
| 1017 | $b = $r * $BASE + $x->[$j]; | ||||
| 1018 | $x->[$j] = int($b/$y); | ||||
| 1019 | $r = $b % $y; | ||||
| 1020 | } | ||||
| 1021 | pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero | ||||
| 1022 | return ($x,$rem) if wantarray; | ||||
| 1023 | return $x; | ||||
| 1024 | } | ||||
| 1025 | # now x and y have more than one element | ||||
| 1026 | |||||
| 1027 | # check whether y has more elements than x, if yet, the result will be 0 | ||||
| 1028 | if (@$yorg > @$x) | ||||
| 1029 | { | ||||
| 1030 | my $rem; | ||||
| 1031 | $rem = [@$x] if wantarray; # make copy | ||||
| 1032 | splice (@$x,1); # keep ref to original array | ||||
| 1033 | $x->[0] = 0; # set to 0 | ||||
| 1034 | return ($x,$rem) if wantarray; # including remainder? | ||||
| 1035 | return $x; # only x, which is [0] now | ||||
| 1036 | } | ||||
| 1037 | # check whether the numbers have the same number of elements, in that case | ||||
| 1038 | # the result will fit into one element and can be computed efficiently | ||||
| 1039 | if (@$yorg == @$x) | ||||
| 1040 | { | ||||
| 1041 | my $rem; | ||||
| 1042 | # if $yorg has more digits than $x (it's leading element is longer than | ||||
| 1043 | # the one from $x), the result will also be 0: | ||||
| 1044 | if (length(int($yorg->[-1])) > length(int($x->[-1]))) | ||||
| 1045 | { | ||||
| 1046 | $rem = [@$x] if wantarray; # make copy | ||||
| 1047 | splice (@$x,1); # keep ref to org array | ||||
| 1048 | $x->[0] = 0; # set to 0 | ||||
| 1049 | return ($x,$rem) if wantarray; # including remainder? | ||||
| 1050 | return $x; | ||||
| 1051 | } | ||||
| 1052 | # now calculate $x / $yorg | ||||
| 1053 | |||||
| 1054 | if (length(int($yorg->[-1])) == length(int($x->[-1]))) | ||||
| 1055 | { | ||||
| 1056 | # same length, so make full compare | ||||
| 1057 | |||||
| 1058 | my $a = 0; my $j = scalar @$x - 1; | ||||
| 1059 | # manual way (abort if unequal, good for early ne) | ||||
| 1060 | while ($j >= 0) | ||||
| 1061 | { | ||||
| 1062 | last if ($a = $x->[$j] - $yorg->[$j]); $j--; | ||||
| 1063 | } | ||||
| 1064 | # $a contains the result of the compare between X and Y | ||||
| 1065 | # a < 0: x < y, a == 0: x == y, a > 0: x > y | ||||
| 1066 | if ($a <= 0) | ||||
| 1067 | { | ||||
| 1068 | $rem = [ 0 ]; # a = 0 => x == y => rem 0 | ||||
| 1069 | $rem = [@$x] if $a != 0; # a < 0 => x < y => rem = x | ||||
| 1070 | splice(@$x,1); # keep single element | ||||
| 1071 | $x->[0] = 0; # if $a < 0 | ||||
| 1072 | $x->[0] = 1 if $a == 0; # $x == $y | ||||
| 1073 | return ($x,$rem) if wantarray; # including remainder? | ||||
| 1074 | return $x; | ||||
| 1075 | } | ||||
| 1076 | # $x >= $y, so proceed normally | ||||
| 1077 | |||||
| 1078 | } | ||||
| 1079 | } | ||||
| 1080 | |||||
| 1081 | # all other cases: | ||||
| 1082 | |||||
| 1083 | my $y = [ @$yorg ]; # always make copy to preserve | ||||
| 1084 | |||||
| 1085 | my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0); | ||||
| 1086 | |||||
| 1087 | $car = $bar = $prd = 0; | ||||
| 1088 | if (($dd = int($BASE/($y->[-1]+1))) != 1) | ||||
| 1089 | { | ||||
| 1090 | for $xi (@$x) | ||||
| 1091 | { | ||||
| 1092 | $xi = $xi * $dd + $car; | ||||
| 1093 | $xi -= ($car = int($xi / $BASE)) * $BASE; | ||||
| 1094 | } | ||||
| 1095 | push(@$x, $car); $car = 0; | ||||
| 1096 | for $yi (@$y) | ||||
| 1097 | { | ||||
| 1098 | $yi = $yi * $dd + $car; | ||||
| 1099 | $yi -= ($car = int($yi / $BASE)) * $BASE; | ||||
| 1100 | } | ||||
| 1101 | } | ||||
| 1102 | else | ||||
| 1103 | { | ||||
| 1104 | push(@$x, 0); | ||||
| 1105 | } | ||||
| 1106 | |||||
| 1107 | # @q will accumulate the final result, $q contains the current computed | ||||
| 1108 | # part of the final result | ||||
| 1109 | |||||
| 1110 | @q = (); ($v2,$v1) = @$y[-2,-1]; | ||||
| 1111 | $v2 = 0 unless $v2; | ||||
| 1112 | while ($#$x > $#$y) | ||||
| 1113 | { | ||||
| 1114 | ($u2,$u1,$u0) = @$x[-3..-1]; | ||||
| 1115 | $u2 = 0 unless $u2; | ||||
| 1116 | #warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | ||||
| 1117 | # if $v1 == 0; | ||||
| 1118 | $q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$BASE+$u1)/$v1)); | ||||
| 1119 | --$q while ($v2*$q > ($u0*$BASE+$u1-$q*$v1)*$BASE+$u2); | ||||
| 1120 | if ($q) | ||||
| 1121 | { | ||||
| 1122 | ($car, $bar) = (0,0); | ||||
| 1123 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
| 1124 | { | ||||
| 1125 | $prd = $q * $y->[$yi] + $car; | ||||
| 1126 | $prd -= ($car = int($prd / $BASE)) * $BASE; | ||||
| 1127 | $x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0)); | ||||
| 1128 | } | ||||
| 1129 | if ($x->[-1] < $car + $bar) | ||||
| 1130 | { | ||||
| 1131 | $car = 0; --$q; | ||||
| 1132 | for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi) | ||||
| 1133 | { | ||||
| 1134 | $x->[$xi] -= $BASE | ||||
| 1135 | if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE)); | ||||
| 1136 | } | ||||
| 1137 | } | ||||
| 1138 | } | ||||
| 1139 | pop(@$x); unshift(@q, $q); | ||||
| 1140 | } | ||||
| 1141 | if (wantarray) | ||||
| 1142 | { | ||||
| 1143 | @d = (); | ||||
| 1144 | if ($dd != 1) | ||||
| 1145 | { | ||||
| 1146 | $car = 0; | ||||
| 1147 | for $xi (reverse @$x) | ||||
| 1148 | { | ||||
| 1149 | $prd = $car * $BASE + $xi; | ||||
| 1150 | $car = $prd - ($tmp = int($prd / $dd)) * $dd; | ||||
| 1151 | unshift(@d, $tmp); | ||||
| 1152 | } | ||||
| 1153 | } | ||||
| 1154 | else | ||||
| 1155 | { | ||||
| 1156 | @d = @$x; | ||||
| 1157 | } | ||||
| 1158 | @$x = @q; | ||||
| 1159 | my $d = \@d; | ||||
| 1160 | __strip_zeros($x); | ||||
| 1161 | __strip_zeros($d); | ||||
| 1162 | return ($x,$d); | ||||
| 1163 | } | ||||
| 1164 | @$x = @q; | ||||
| 1165 | __strip_zeros($x); | ||||
| 1166 | $x; | ||||
| 1167 | } | ||||
| 1168 | |||||
| 1169 | ############################################################################## | ||||
| 1170 | # testing | ||||
| 1171 | |||||
| 1172 | sub _acmp | ||||
| 1173 | { | ||||
| 1174 | # internal absolute post-normalized compare (ignore signs) | ||||
| 1175 | # ref to array, ref to array, return <0, 0, >0 | ||||
| 1176 | # arrays must have at least one entry; this is not checked for | ||||
| 1177 | my ($c,$cx,$cy) = @_; | ||||
| 1178 | |||||
| 1179 | # shortcut for short numbers | ||||
| 1180 | return (($cx->[0] <=> $cy->[0]) <=> 0) | ||||
| 1181 | if scalar @$cx == scalar @$cy && scalar @$cx == 1; | ||||
| 1182 | |||||
| 1183 | # fast comp based on number of array elements (aka pseudo-length) | ||||
| 1184 | my $lxy = (scalar @$cx - scalar @$cy) | ||||
| 1185 | # or length of first element if same number of elements (aka difference 0) | ||||
| 1186 | || | ||||
| 1187 | # need int() here because sometimes the last element is '00018' vs '18' | ||||
| 1188 | (length(int($cx->[-1])) - length(int($cy->[-1]))); | ||||
| 1189 | return -1 if $lxy < 0; # already differs, ret | ||||
| 1190 | return 1 if $lxy > 0; # ditto | ||||
| 1191 | |||||
| 1192 | # manual way (abort if unequal, good for early ne) | ||||
| 1193 | my $a; my $j = scalar @$cx; | ||||
| 1194 | while (--$j >= 0) | ||||
| 1195 | { | ||||
| 1196 | last if ($a = $cx->[$j] - $cy->[$j]); | ||||
| 1197 | } | ||||
| 1198 | $a <=> 0; | ||||
| 1199 | } | ||||
| 1200 | |||||
| 1201 | sub _len | ||||
| 1202 | { | ||||
| 1203 | # compute number of digits in base 10 | ||||
| 1204 | |||||
| 1205 | # int() because add/sub sometimes leaves strings (like '00005') instead of | ||||
| 1206 | # '5' in this place, thus causing length() to report wrong length | ||||
| 1207 | my $cx = $_[1]; | ||||
| 1208 | |||||
| 1209 | (@$cx-1)*$BASE_LEN+length(int($cx->[-1])); | ||||
| 1210 | } | ||||
| 1211 | |||||
| 1212 | sub _digit | ||||
| 1213 | { | ||||
| 1214 | # Return the nth digit. Zero is rightmost, so _digit(123,0) gives 3. | ||||
| 1215 | # Negative values count from the left, so _digit(123, -1) gives 1. | ||||
| 1216 | my ($c,$x,$n) = @_; | ||||
| 1217 | |||||
| 1218 | my $len = _len('',$x); | ||||
| 1219 | |||||
| 1220 | $n += $len if $n < 0; # -1 last, -2 second-to-last | ||||
| 1221 | return "0" if $n < 0 || $n >= $len; # return 0 for digits out of range | ||||
| 1222 | |||||
| 1223 | my $elem = int($n / $BASE_LEN); # which array element | ||||
| 1224 | my $digit = $n % $BASE_LEN; # which digit in this element | ||||
| 1225 | substr("$x->[$elem]", -$digit-1, 1); | ||||
| 1226 | } | ||||
| 1227 | |||||
| 1228 | sub _zeros | ||||
| 1229 | { | ||||
| 1230 | # return amount of trailing zeros in decimal | ||||
| 1231 | # check each array elem in _m for having 0 at end as long as elem == 0 | ||||
| 1232 | # Upon finding a elem != 0, stop | ||||
| 1233 | my $x = $_[1]; | ||||
| 1234 | |||||
| 1235 | return 0 if scalar @$x == 1 && $x->[0] == 0; | ||||
| 1236 | |||||
| 1237 | my $zeros = 0; my $elem; | ||||
| 1238 | foreach my $e (@$x) | ||||
| 1239 | { | ||||
| 1240 | if ($e != 0) | ||||
| 1241 | { | ||||
| 1242 | $elem = "$e"; # preserve x | ||||
| 1243 | $elem =~ s/.*?(0*$)/$1/; # strip anything not zero | ||||
| 1244 | $zeros *= $BASE_LEN; # elems * 5 | ||||
| 1245 | $zeros += length($elem); # count trailing zeros | ||||
| 1246 | last; # early out | ||||
| 1247 | } | ||||
| 1248 | $zeros ++; # real else branch: 50% slower! | ||||
| 1249 | } | ||||
| 1250 | $zeros; | ||||
| 1251 | } | ||||
| 1252 | |||||
| 1253 | ############################################################################## | ||||
| 1254 | # _is_* routines | ||||
| 1255 | |||||
| 1256 | sub _is_zero | ||||
| 1257 | { | ||||
| 1258 | # return true if arg is zero | ||||
| 1259 | (((scalar @{$_[1]} == 1) && ($_[1]->[0] == 0))) <=> 0; | ||||
| 1260 | } | ||||
| 1261 | |||||
| 1262 | sub _is_even | ||||
| 1263 | { | ||||
| 1264 | # return true if arg is even | ||||
| 1265 | (!($_[1]->[0] & 1)) <=> 0; | ||||
| 1266 | } | ||||
| 1267 | |||||
| 1268 | sub _is_odd | ||||
| 1269 | { | ||||
| 1270 | # return true if arg is odd | ||||
| 1271 | (($_[1]->[0] & 1)) <=> 0; | ||||
| 1272 | } | ||||
| 1273 | |||||
| 1274 | sub _is_one | ||||
| 1275 | { | ||||
| 1276 | # return true if arg is one | ||||
| 1277 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 1) <=> 0; | ||||
| 1278 | } | ||||
| 1279 | |||||
| 1280 | sub _is_two | ||||
| 1281 | { | ||||
| 1282 | # return true if arg is two | ||||
| 1283 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 2) <=> 0; | ||||
| 1284 | } | ||||
| 1285 | |||||
| 1286 | sub _is_ten | ||||
| 1287 | { | ||||
| 1288 | # return true if arg is ten | ||||
| 1289 | (scalar @{$_[1]} == 1) && ($_[1]->[0] == 10) <=> 0; | ||||
| 1290 | } | ||||
| 1291 | |||||
| 1292 | sub __strip_zeros | ||||
| 1293 | { | ||||
| 1294 | # internal normalization function that strips leading zeros from the array | ||||
| 1295 | # args: ref to array | ||||
| 1296 | my $s = shift; | ||||
| 1297 | |||||
| 1298 | my $cnt = scalar @$s; # get count of parts | ||||
| 1299 | my $i = $cnt-1; | ||||
| 1300 | push @$s,0 if $i < 0; # div might return empty results, so fix it | ||||
| 1301 | |||||
| 1302 | return $s if @$s == 1; # early out | ||||
| 1303 | |||||
| 1304 | #print "strip: cnt $cnt i $i\n"; | ||||
| 1305 | # '0', '3', '4', '0', '0', | ||||
| 1306 | # 0 1 2 3 4 | ||||
| 1307 | # cnt = 5, i = 4 | ||||
| 1308 | # i = 4 | ||||
| 1309 | # i = 3 | ||||
| 1310 | # => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos) | ||||
| 1311 | # >= 1: skip first part (this can be zero) | ||||
| 1312 | while ($i > 0) { last if $s->[$i] != 0; $i--; } | ||||
| 1313 | $i++; splice @$s,$i if ($i < $cnt); # $i cant be 0 | ||||
| 1314 | $s; | ||||
| 1315 | } | ||||
| 1316 | |||||
| 1317 | ############################################################################### | ||||
| 1318 | # check routine to test internal state for corruptions | ||||
| 1319 | |||||
| 1320 | sub _check | ||||
| 1321 | { | ||||
| 1322 | # used by the test suite | ||||
| 1323 | my $x = $_[1]; | ||||
| 1324 | |||||
| 1325 | return "$x is not a reference" if !ref($x); | ||||
| 1326 | |||||
| 1327 | # are all parts are valid? | ||||
| 1328 | my $i = 0; my $j = scalar @$x; my ($e,$try); | ||||
| 1329 | while ($i < $j) | ||||
| 1330 | { | ||||
| 1331 | $e = $x->[$i]; $e = 'undef' unless defined $e; | ||||
| 1332 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e)"; | ||||
| 1333 | last if $e !~ /^[+]?[0-9]+$/; | ||||
| 1334 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (stringify)"; | ||||
| 1335 | last if "$e" !~ /^[+]?[0-9]+$/; | ||||
| 1336 | $try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (cat-stringify)"; | ||||
| 1337 | last if '' . "$e" !~ /^[+]?[0-9]+$/; | ||||
| 1338 | $try = ' < 0 || >= $BASE; '."($x, $e)"; | ||||
| 1339 | last if $e <0 || $e >= $BASE; | ||||
| 1340 | # this test is disabled, since new/bnorm and certain ops (like early out | ||||
| 1341 | # in add/sub) are allowed/expected to leave '00000' in some elements | ||||
| 1342 | #$try = '=~ /^00+/; '."($x, $e)"; | ||||
| 1343 | #last if $e =~ /^00+/; | ||||
| 1344 | $i++; | ||||
| 1345 | } | ||||
| 1346 | return "Illegal part '$e' at pos $i (tested: $try)" if $i < $j; | ||||
| 1347 | 0; | ||||
| 1348 | } | ||||
| 1349 | |||||
| 1350 | |||||
| 1351 | ############################################################################### | ||||
| 1352 | |||||
| 1353 | sub _mod | ||||
| 1354 | { | ||||
| 1355 | # if possible, use mod shortcut | ||||
| 1356 | my ($c,$x,$yo) = @_; | ||||
| 1357 | |||||
| 1358 | # slow way since $y too big | ||||
| 1359 | if (scalar @$yo > 1) | ||||
| 1360 | { | ||||
| 1361 | my ($xo,$rem) = _div($c,$x,$yo); | ||||
| 1362 | @$x = @$rem; | ||||
| 1363 | return $x; | ||||
| 1364 | } | ||||
| 1365 | |||||
| 1366 | my $y = $yo->[0]; | ||||
| 1367 | |||||
| 1368 | # if both are single element arrays | ||||
| 1369 | if (scalar @$x == 1) | ||||
| 1370 | { | ||||
| 1371 | $x->[0] %= $y; | ||||
| 1372 | return $x; | ||||
| 1373 | } | ||||
| 1374 | |||||
| 1375 | # if @$x has more than one element, but @$y is a single element | ||||
| 1376 | my $b = $BASE % $y; | ||||
| 1377 | if ($b == 0) | ||||
| 1378 | { | ||||
| 1379 | # when BASE % Y == 0 then (B * BASE) % Y == 0 | ||||
| 1380 | # (B * BASE) % $y + A % Y => A % Y | ||||
| 1381 | # so need to consider only last element: O(1) | ||||
| 1382 | $x->[0] %= $y; | ||||
| 1383 | } | ||||
| 1384 | elsif ($b == 1) | ||||
| 1385 | { | ||||
| 1386 | # else need to go through all elements in @$x: O(N), but loop is a bit | ||||
| 1387 | # simplified | ||||
| 1388 | my $r = 0; | ||||
| 1389 | foreach (@$x) | ||||
| 1390 | { | ||||
| 1391 | $r = ($r + $_) % $y; # not much faster, but heh... | ||||
| 1392 | #$r += $_ % $y; $r %= $y; | ||||
| 1393 | } | ||||
| 1394 | $r = 0 if $r == $y; | ||||
| 1395 | $x->[0] = $r; | ||||
| 1396 | } | ||||
| 1397 | else | ||||
| 1398 | { | ||||
| 1399 | # else need to go through all elements in @$x: O(N) | ||||
| 1400 | my $r = 0; | ||||
| 1401 | my $bm = 1; | ||||
| 1402 | foreach (@$x) | ||||
| 1403 | { | ||||
| 1404 | $r = ($_ * $bm + $r) % $y; | ||||
| 1405 | $bm = ($bm * $b) % $y; | ||||
| 1406 | |||||
| 1407 | #$r += ($_ % $y) * $bm; | ||||
| 1408 | #$bm *= $b; | ||||
| 1409 | #$bm %= $y; | ||||
| 1410 | #$r %= $y; | ||||
| 1411 | } | ||||
| 1412 | $r = 0 if $r == $y; | ||||
| 1413 | $x->[0] = $r; | ||||
| 1414 | } | ||||
| 1415 | @$x = $x->[0]; # keep one element of @$x | ||||
| 1416 | return $x; | ||||
| 1417 | } | ||||
| 1418 | |||||
| 1419 | ############################################################################## | ||||
| 1420 | # shifts | ||||
| 1421 | |||||
| 1422 | sub _rsft | ||||
| 1423 | { | ||||
| 1424 | my ($c,$x,$y,$n) = @_; | ||||
| 1425 | |||||
| 1426 | if ($n != 10) | ||||
| 1427 | { | ||||
| 1428 | $n = _new($c,$n); return _div($c,$x, _pow($c,$n,$y)); | ||||
| 1429 | } | ||||
| 1430 | |||||
| 1431 | # shortcut (faster) for shifting by 10) | ||||
| 1432 | # multiples of $BASE_LEN | ||||
| 1433 | my $dst = 0; # destination | ||||
| 1434 | my $src = _num($c,$y); # as normal int | ||||
| 1435 | my $xlen = (@$x-1)*$BASE_LEN+length(int($x->[-1])); # len of x in digits | ||||
| 1436 | if ($src >= $xlen or ($src == $xlen and ! defined $x->[1])) | ||||
| 1437 | { | ||||
| 1438 | # 12345 67890 shifted right by more than 10 digits => 0 | ||||
| 1439 | splice (@$x,1); # leave only one element | ||||
| 1440 | $x->[0] = 0; # set to zero | ||||
| 1441 | return $x; | ||||
| 1442 | } | ||||
| 1443 | my $rem = $src % $BASE_LEN; # remainder to shift | ||||
| 1444 | $src = int($src / $BASE_LEN); # source | ||||
| 1445 | if ($rem == 0) | ||||
| 1446 | { | ||||
| 1447 | splice (@$x,0,$src); # even faster, 38.4 => 39.3 | ||||
| 1448 | } | ||||
| 1449 | else | ||||
| 1450 | { | ||||
| 1451 | my $len = scalar @$x - $src; # elems to go | ||||
| 1452 | my $vd; my $z = '0'x $BASE_LEN; | ||||
| 1453 | $x->[scalar @$x] = 0; # avoid || 0 test inside loop | ||||
| 1454 | while ($dst < $len) | ||||
| 1455 | { | ||||
| 1456 | $vd = $z.$x->[$src]; | ||||
| 1457 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN-$rem); | ||||
| 1458 | $src++; | ||||
| 1459 | $vd = substr($z.$x->[$src],-$rem,$rem) . $vd; | ||||
| 1460 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN; | ||||
| 1461 | $x->[$dst] = int($vd); | ||||
| 1462 | $dst++; | ||||
| 1463 | } | ||||
| 1464 | splice (@$x,$dst) if $dst > 0; # kill left-over array elems | ||||
| 1465 | pop @$x if $x->[-1] == 0 && @$x > 1; # kill last element if 0 | ||||
| 1466 | } # else rem == 0 | ||||
| 1467 | $x; | ||||
| 1468 | } | ||||
| 1469 | |||||
| 1470 | sub _lsft | ||||
| 1471 | { | ||||
| 1472 | my ($c,$x,$y,$n) = @_; | ||||
| 1473 | |||||
| 1474 | if ($n != 10) | ||||
| 1475 | { | ||||
| 1476 | $n = _new($c,$n); return _mul($c,$x, _pow($c,$n,$y)); | ||||
| 1477 | } | ||||
| 1478 | |||||
| 1479 | # shortcut (faster) for shifting by 10) since we are in base 10eX | ||||
| 1480 | # multiples of $BASE_LEN: | ||||
| 1481 | my $src = scalar @$x; # source | ||||
| 1482 | my $len = _num($c,$y); # shift-len as normal int | ||||
| 1483 | my $rem = $len % $BASE_LEN; # remainder to shift | ||||
| 1484 | my $dst = $src + int($len/$BASE_LEN); # destination | ||||
| 1485 | my $vd; # further speedup | ||||
| 1486 | $x->[$src] = 0; # avoid first ||0 for speed | ||||
| 1487 | my $z = '0' x $BASE_LEN; | ||||
| 1488 | while ($src >= 0) | ||||
| 1489 | { | ||||
| 1490 | $vd = $x->[$src]; $vd = $z.$vd; | ||||
| 1491 | $vd = substr($vd,-$BASE_LEN+$rem,$BASE_LEN-$rem); | ||||
| 1492 | $vd .= $src > 0 ? substr($z.$x->[$src-1],-$BASE_LEN,$rem) : '0' x $rem; | ||||
| 1493 | $vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN; | ||||
| 1494 | $x->[$dst] = int($vd); | ||||
| 1495 | $dst--; $src--; | ||||
| 1496 | } | ||||
| 1497 | # set lowest parts to 0 | ||||
| 1498 | while ($dst >= 0) { $x->[$dst--] = 0; } | ||||
| 1499 | # fix spurious last zero element | ||||
| 1500 | splice @$x,-1 if $x->[-1] == 0; | ||||
| 1501 | $x; | ||||
| 1502 | } | ||||
| 1503 | |||||
| 1504 | sub _pow | ||||
| 1505 | { | ||||
| 1506 | # power of $x to $y | ||||
| 1507 | # ref to array, ref to array, return ref to array | ||||
| 1508 | my ($c,$cx,$cy) = @_; | ||||
| 1509 | |||||
| 1510 | if (scalar @$cy == 1 && $cy->[0] == 0) | ||||
| 1511 | { | ||||
| 1512 | splice (@$cx,1); $cx->[0] = 1; # y == 0 => x => 1 | ||||
| 1513 | return $cx; | ||||
| 1514 | } | ||||
| 1515 | if ((scalar @$cx == 1 && $cx->[0] == 1) || # x == 1 | ||||
| 1516 | (scalar @$cy == 1 && $cy->[0] == 1)) # or y == 1 | ||||
| 1517 | { | ||||
| 1518 | return $cx; | ||||
| 1519 | } | ||||
| 1520 | if (scalar @$cx == 1 && $cx->[0] == 0) | ||||
| 1521 | { | ||||
| 1522 | splice (@$cx,1); $cx->[0] = 0; # 0 ** y => 0 (if not y <= 0) | ||||
| 1523 | return $cx; | ||||
| 1524 | } | ||||
| 1525 | |||||
| 1526 | my $pow2 = _one(); | ||||
| 1527 | |||||
| 1528 | my $y_bin = _as_bin($c,$cy); $y_bin =~ s/^0b//; | ||||
| 1529 | my $len = length($y_bin); | ||||
| 1530 | while (--$len > 0) | ||||
| 1531 | { | ||||
| 1532 | _mul($c,$pow2,$cx) if substr($y_bin,$len,1) eq '1'; # is odd? | ||||
| 1533 | _mul($c,$cx,$cx); | ||||
| 1534 | } | ||||
| 1535 | |||||
| 1536 | _mul($c,$cx,$pow2); | ||||
| 1537 | $cx; | ||||
| 1538 | } | ||||
| 1539 | |||||
| 1540 | sub _nok { | ||||
| 1541 | # Return binomial coefficient (n over k). | ||||
| 1542 | # Given refs to arrays, return ref to array. | ||||
| 1543 | # First input argument is modified. | ||||
| 1544 | |||||
| 1545 | my ($c, $n, $k) = @_; | ||||
| 1546 | |||||
| 1547 | # If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as | ||||
| 1548 | # nok(n, n-k), to minimize the number if iterations in the loop. | ||||
| 1549 | |||||
| 1550 | { | ||||
| 1551 | my $twok = _mul($c, _two($c), _copy($c, $k)); # 2 * k | ||||
| 1552 | if (_acmp($c, $twok, $n) > 0) { # if 2*k > n | ||||
| 1553 | $k = _sub($c, _copy($c, $n), $k); # k = n - k | ||||
| 1554 | } | ||||
| 1555 | } | ||||
| 1556 | |||||
| 1557 | # Example: | ||||
| 1558 | # | ||||
| 1559 | # / 7 \ 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7 | ||||
| 1560 | # | | = --------- = --------------- = --------- = 5 * - * - | ||||
| 1561 | # \ 3 / (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3 | ||||
| 1562 | |||||
| 1563 | if (_is_zero($c, $k)) { | ||||
| 1564 | @$n = 1; | ||||
| 1565 | } | ||||
| 1566 | |||||
| 1567 | else { | ||||
| 1568 | |||||
| 1569 | # Make a copy of the original n, since we'll be modifying n in-place. | ||||
| 1570 | |||||
| 1571 | my $n_orig = _copy($c, $n); | ||||
| 1572 | |||||
| 1573 | # n = 5, f = 6, d = 2 (cf. example above) | ||||
| 1574 | |||||
| 1575 | _sub($c, $n, $k); | ||||
| 1576 | _inc($c, $n); | ||||
| 1577 | |||||
| 1578 | my $f = _copy($c, $n); | ||||
| 1579 | _inc($c, $f); | ||||
| 1580 | |||||
| 1581 | my $d = _two($c); | ||||
| 1582 | |||||
| 1583 | # while f <= n (the original n, that is) ... | ||||
| 1584 | |||||
| 1585 | while (_acmp($c, $f, $n_orig) <= 0) { | ||||
| 1586 | |||||
| 1587 | # n = (n * f / d) == 5 * 6 / 2 (cf. example above) | ||||
| 1588 | |||||
| 1589 | _mul($c, $n, $f); | ||||
| 1590 | _div($c, $n, $d); | ||||
| 1591 | |||||
| 1592 | # f = 7, d = 3 (cf. example above) | ||||
| 1593 | |||||
| 1594 | _inc($c, $f); | ||||
| 1595 | _inc($c, $d); | ||||
| 1596 | } | ||||
| 1597 | |||||
| 1598 | } | ||||
| 1599 | |||||
| 1600 | return $n; | ||||
| 1601 | } | ||||
| 1602 | |||||
| 1603 | 1 | 900ns | my @factorials = ( | ||
| 1604 | 1, | ||||
| 1605 | 1, | ||||
| 1606 | 2, | ||||
| 1607 | 2*3, | ||||
| 1608 | 2*3*4, | ||||
| 1609 | 2*3*4*5, | ||||
| 1610 | 2*3*4*5*6, | ||||
| 1611 | 2*3*4*5*6*7, | ||||
| 1612 | ); | ||||
| 1613 | |||||
| 1614 | sub _fac | ||||
| 1615 | { | ||||
| 1616 | # factorial of $x | ||||
| 1617 | # ref to array, return ref to array | ||||
| 1618 | my ($c,$cx) = @_; | ||||
| 1619 | |||||
| 1620 | if ((@$cx == 1) && ($cx->[0] <= 7)) | ||||
| 1621 | { | ||||
| 1622 | $cx->[0] = $factorials[$cx->[0]]; # 0 => 1, 1 => 1, 2 => 2 etc. | ||||
| 1623 | return $cx; | ||||
| 1624 | } | ||||
| 1625 | |||||
| 1626 | if ((@$cx == 1) && # we do this only if $x >= 12 and $x <= 7000 | ||||
| 1627 | ($cx->[0] >= 12 && $cx->[0] < 7000)) | ||||
| 1628 | { | ||||
| 1629 | |||||
| 1630 | # Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j) | ||||
| 1631 | # See http://blogten.blogspot.com/2007/01/calculating-n.html | ||||
| 1632 | # The above series can be expressed as factors: | ||||
| 1633 | # k * k - (j - i) * 2 | ||||
| 1634 | # We cache k*k, and calculate (j * j) as the sum of the first j odd integers | ||||
| 1635 | |||||
| 1636 | # This will not work when N exceeds the storage of a Perl scalar, however, | ||||
| 1637 | # in this case the algorithm would be way to slow to terminate, anyway. | ||||
| 1638 | |||||
| 1639 | # As soon as the last element of $cx is 0, we split it up and remember | ||||
| 1640 | # how many zeors we got so far. The reason is that n! will accumulate | ||||
| 1641 | # zeros at the end rather fast. | ||||
| 1642 | my $zero_elements = 0; | ||||
| 1643 | |||||
| 1644 | # If n is even, set n = n -1 | ||||
| 1645 | my $k = _num($c,$cx); my $even = 1; | ||||
| 1646 | if (($k & 1) == 0) | ||||
| 1647 | { | ||||
| 1648 | $even = $k; $k --; | ||||
| 1649 | } | ||||
| 1650 | # set k to the center point | ||||
| 1651 | $k = ($k + 1) / 2; | ||||
| 1652 | # print "k $k even: $even\n"; | ||||
| 1653 | # now calculate k * k | ||||
| 1654 | my $k2 = $k * $k; | ||||
| 1655 | my $odd = 1; my $sum = 1; | ||||
| 1656 | my $i = $k - 1; | ||||
| 1657 | # keep reference to x | ||||
| 1658 | my $new_x = _new($c, $k * $even); | ||||
| 1659 | @$cx = @$new_x; | ||||
| 1660 | if ($cx->[0] == 0) | ||||
| 1661 | { | ||||
| 1662 | $zero_elements ++; shift @$cx; | ||||
| 1663 | } | ||||
| 1664 | # print STDERR "x = ", _str($c,$cx),"\n"; | ||||
| 1665 | my $BASE2 = int(sqrt($BASE))-1; | ||||
| 1666 | my $j = 1; | ||||
| 1667 | while ($j <= $i) | ||||
| 1668 | { | ||||
| 1669 | my $m = ($k2 - $sum); $odd += 2; $sum += $odd; $j++; | ||||
| 1670 | while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2)) | ||||
| 1671 | { | ||||
| 1672 | $m *= ($k2 - $sum); | ||||
| 1673 | $odd += 2; $sum += $odd; $j++; | ||||
| 1674 | # print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1); | ||||
| 1675 | } | ||||
| 1676 | if ($m < $BASE) | ||||
| 1677 | { | ||||
| 1678 | _mul($c,$cx,[$m]); | ||||
| 1679 | } | ||||
| 1680 | else | ||||
| 1681 | { | ||||
| 1682 | _mul($c,$cx,$c->_new($m)); | ||||
| 1683 | } | ||||
| 1684 | if ($cx->[0] == 0) | ||||
| 1685 | { | ||||
| 1686 | $zero_elements ++; shift @$cx; | ||||
| 1687 | } | ||||
| 1688 | # print STDERR "Calculate $k2 - $sum = $m (x = ", _str($c,$cx),")\n"; | ||||
| 1689 | } | ||||
| 1690 | # multiply in the zeros again | ||||
| 1691 | unshift @$cx, (0) x $zero_elements; | ||||
| 1692 | return $cx; | ||||
| 1693 | } | ||||
| 1694 | |||||
| 1695 | # go forward until $base is exceeded | ||||
| 1696 | # limit is either $x steps (steps == 100 means a result always too high) or | ||||
| 1697 | # $base. | ||||
| 1698 | my $steps = 100; $steps = $cx->[0] if @$cx == 1; | ||||
| 1699 | my $r = 2; my $cf = 3; my $step = 2; my $last = $r; | ||||
| 1700 | while ($r*$cf < $BASE && $step < $steps) | ||||
| 1701 | { | ||||
| 1702 | $last = $r; $r *= $cf++; $step++; | ||||
| 1703 | } | ||||
| 1704 | if ((@$cx == 1) && $step == $cx->[0]) | ||||
| 1705 | { | ||||
| 1706 | # completely done, so keep reference to $x and return | ||||
| 1707 | $cx->[0] = $r; | ||||
| 1708 | return $cx; | ||||
| 1709 | } | ||||
| 1710 | |||||
| 1711 | # now we must do the left over steps | ||||
| 1712 | my $n; # steps still to do | ||||
| 1713 | if (scalar @$cx == 1) | ||||
| 1714 | { | ||||
| 1715 | $n = $cx->[0]; | ||||
| 1716 | } | ||||
| 1717 | else | ||||
| 1718 | { | ||||
| 1719 | $n = _copy($c,$cx); | ||||
| 1720 | } | ||||
| 1721 | |||||
| 1722 | # Set $cx to the last result below $BASE (but keep ref to $x) | ||||
| 1723 | $cx->[0] = $last; splice (@$cx,1); | ||||
| 1724 | # As soon as the last element of $cx is 0, we split it up and remember | ||||
| 1725 | # how many zeors we got so far. The reason is that n! will accumulate | ||||
| 1726 | # zeros at the end rather fast. | ||||
| 1727 | my $zero_elements = 0; | ||||
| 1728 | |||||
| 1729 | # do left-over steps fit into a scalar? | ||||
| 1730 | if (ref $n eq 'ARRAY') | ||||
| 1731 | { | ||||
| 1732 | # No, so use slower inc() & cmp() | ||||
| 1733 | # ($n is at least $BASE here) | ||||
| 1734 | my $base_2 = int(sqrt($BASE)) - 1; | ||||
| 1735 | #print STDERR "base_2: $base_2\n"; | ||||
| 1736 | while ($step < $base_2) | ||||
| 1737 | { | ||||
| 1738 | if ($cx->[0] == 0) | ||||
| 1739 | { | ||||
| 1740 | $zero_elements ++; shift @$cx; | ||||
| 1741 | } | ||||
| 1742 | my $b = $step * ($step + 1); $step += 2; | ||||
| 1743 | _mul($c,$cx,[$b]); | ||||
| 1744 | } | ||||
| 1745 | $step = [$step]; | ||||
| 1746 | while (_acmp($c,$step,$n) <= 0) | ||||
| 1747 | { | ||||
| 1748 | if ($cx->[0] == 0) | ||||
| 1749 | { | ||||
| 1750 | $zero_elements ++; shift @$cx; | ||||
| 1751 | } | ||||
| 1752 | _mul($c,$cx,$step); _inc($c,$step); | ||||
| 1753 | } | ||||
| 1754 | } | ||||
| 1755 | else | ||||
| 1756 | { | ||||
| 1757 | # Yes, so we can speed it up slightly | ||||
| 1758 | |||||
| 1759 | # print "# left over steps $n\n"; | ||||
| 1760 | |||||
| 1761 | my $base_4 = int(sqrt(sqrt($BASE))) - 2; | ||||
| 1762 | #print STDERR "base_4: $base_4\n"; | ||||
| 1763 | my $n4 = $n - 4; | ||||
| 1764 | while ($step < $n4 && $step < $base_4) | ||||
| 1765 | { | ||||
| 1766 | if ($cx->[0] == 0) | ||||
| 1767 | { | ||||
| 1768 | $zero_elements ++; shift @$cx; | ||||
| 1769 | } | ||||
| 1770 | my $b = $step * ($step + 1); $step += 2; $b *= $step * ($step + 1); $step += 2; | ||||
| 1771 | _mul($c,$cx,[$b]); | ||||
| 1772 | } | ||||
| 1773 | my $base_2 = int(sqrt($BASE)) - 1; | ||||
| 1774 | my $n2 = $n - 2; | ||||
| 1775 | #print STDERR "base_2: $base_2\n"; | ||||
| 1776 | while ($step < $n2 && $step < $base_2) | ||||
| 1777 | { | ||||
| 1778 | if ($cx->[0] == 0) | ||||
| 1779 | { | ||||
| 1780 | $zero_elements ++; shift @$cx; | ||||
| 1781 | } | ||||
| 1782 | my $b = $step * ($step + 1); $step += 2; | ||||
| 1783 | _mul($c,$cx,[$b]); | ||||
| 1784 | } | ||||
| 1785 | # do what's left over | ||||
| 1786 | while ($step <= $n) | ||||
| 1787 | { | ||||
| 1788 | _mul($c,$cx,[$step]); $step++; | ||||
| 1789 | if ($cx->[0] == 0) | ||||
| 1790 | { | ||||
| 1791 | $zero_elements ++; shift @$cx; | ||||
| 1792 | } | ||||
| 1793 | } | ||||
| 1794 | } | ||||
| 1795 | # multiply in the zeros again | ||||
| 1796 | unshift @$cx, (0) x $zero_elements; | ||||
| 1797 | $cx; # return result | ||||
| 1798 | } | ||||
| 1799 | |||||
| 1800 | ############################################################################# | ||||
| 1801 | |||||
| 1802 | sub _log_int | ||||
| 1803 | { | ||||
| 1804 | # calculate integer log of $x to base $base | ||||
| 1805 | # ref to array, ref to array - return ref to array | ||||
| 1806 | my ($c,$x,$base) = @_; | ||||
| 1807 | |||||
| 1808 | # X == 0 => NaN | ||||
| 1809 | return if (scalar @$x == 1 && $x->[0] == 0); | ||||
| 1810 | # BASE 0 or 1 => NaN | ||||
| 1811 | return if (scalar @$base == 1 && $base->[0] < 2); | ||||
| 1812 | my $cmp = _acmp($c,$x,$base); # X == BASE => 1 | ||||
| 1813 | if ($cmp == 0) | ||||
| 1814 | { | ||||
| 1815 | splice (@$x,1); $x->[0] = 1; | ||||
| 1816 | return ($x,1) | ||||
| 1817 | } | ||||
| 1818 | # X < BASE | ||||
| 1819 | if ($cmp < 0) | ||||
| 1820 | { | ||||
| 1821 | splice (@$x,1); $x->[0] = 0; | ||||
| 1822 | return ($x,undef); | ||||
| 1823 | } | ||||
| 1824 | |||||
| 1825 | my $x_org = _copy($c,$x); # preserve x | ||||
| 1826 | splice(@$x,1); $x->[0] = 1; # keep ref to $x | ||||
| 1827 | |||||
| 1828 | # Compute a guess for the result based on: | ||||
| 1829 | # $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) ) | ||||
| 1830 | my $len = _len($c,$x_org); | ||||
| 1831 | my $log = log($base->[-1]) / log(10); | ||||
| 1832 | |||||
| 1833 | # for each additional element in $base, we add $BASE_LEN to the result, | ||||
| 1834 | # based on the observation that log($BASE,10) is BASE_LEN and | ||||
| 1835 | # log(x*y) == log(x) + log(y): | ||||
| 1836 | $log += ((scalar @$base)-1) * $BASE_LEN; | ||||
| 1837 | |||||
| 1838 | # calculate now a guess based on the values obtained above: | ||||
| 1839 | my $res = int($len / $log); | ||||
| 1840 | |||||
| 1841 | $x->[0] = $res; | ||||
| 1842 | my $trial = _pow ($c, _copy($c, $base), $x); | ||||
| 1843 | my $a = _acmp($c,$trial,$x_org); | ||||
| 1844 | |||||
| 1845 | # print STDERR "# trial ", _str($c,$x)," was: $a (0 = exact, -1 too small, +1 too big)\n"; | ||||
| 1846 | |||||
| 1847 | # found an exact result? | ||||
| 1848 | return ($x,1) if $a == 0; | ||||
| 1849 | |||||
| 1850 | if ($a > 0) | ||||
| 1851 | { | ||||
| 1852 | # or too big | ||||
| 1853 | _div($c,$trial,$base); _dec($c, $x); | ||||
| 1854 | while (($a = _acmp($c,$trial,$x_org)) > 0) | ||||
| 1855 | { | ||||
| 1856 | # print STDERR "# big _log_int at ", _str($c,$x), "\n"; | ||||
| 1857 | _div($c,$trial,$base); _dec($c, $x); | ||||
| 1858 | } | ||||
| 1859 | # result is now exact (a == 0), or too small (a < 0) | ||||
| 1860 | return ($x, $a == 0 ? 1 : 0); | ||||
| 1861 | } | ||||
| 1862 | |||||
| 1863 | # else: result was to small | ||||
| 1864 | _mul($c,$trial,$base); | ||||
| 1865 | |||||
| 1866 | # did we now get the right result? | ||||
| 1867 | $a = _acmp($c,$trial,$x_org); | ||||
| 1868 | |||||
| 1869 | if ($a == 0) # yes, exactly | ||||
| 1870 | { | ||||
| 1871 | _inc($c, $x); | ||||
| 1872 | return ($x,1); | ||||
| 1873 | } | ||||
| 1874 | return ($x,0) if $a > 0; | ||||
| 1875 | |||||
| 1876 | # Result still too small (we should come here only if the estimate above | ||||
| 1877 | # was very off base): | ||||
| 1878 | |||||
| 1879 | # Now let the normal trial run obtain the real result | ||||
| 1880 | # Simple loop that increments $x by 2 in each step, possible overstepping | ||||
| 1881 | # the real result | ||||
| 1882 | |||||
| 1883 | my $base_mul = _mul($c, _copy($c,$base), $base); # $base * $base | ||||
| 1884 | |||||
| 1885 | while (($a = _acmp($c,$trial,$x_org)) < 0) | ||||
| 1886 | { | ||||
| 1887 | # print STDERR "# small _log_int at ", _str($c,$x), "\n"; | ||||
| 1888 | _mul($c,$trial,$base_mul); _add($c, $x, [2]); | ||||
| 1889 | } | ||||
| 1890 | |||||
| 1891 | my $exact = 1; | ||||
| 1892 | if ($a > 0) | ||||
| 1893 | { | ||||
| 1894 | # overstepped the result | ||||
| 1895 | _dec($c, $x); | ||||
| 1896 | _div($c,$trial,$base); | ||||
| 1897 | $a = _acmp($c,$trial,$x_org); | ||||
| 1898 | if ($a > 0) | ||||
| 1899 | { | ||||
| 1900 | _dec($c, $x); | ||||
| 1901 | } | ||||
| 1902 | $exact = 0 if $a != 0; # a = -1 => not exact result, a = 0 => exact | ||||
| 1903 | } | ||||
| 1904 | |||||
| 1905 | ($x,$exact); # return result | ||||
| 1906 | } | ||||
| 1907 | |||||
| 1908 | # for debugging: | ||||
| 1909 | 2 | 797µs | 2 | 99µs | # spent 55µs (11+44) within Math::BigInt::Calc::BEGIN@1909 which was called:
# once (11µs+44µs) by Math::BigInt::BEGIN@1 at line 1909 # spent 55µs making 1 call to Math::BigInt::Calc::BEGIN@1909
# spent 44µs making 1 call to constant::import |
| 1910 | 1 | 200ns | my $steps = 0; | ||
| 1911 | sub steps { $steps }; | ||||
| 1912 | |||||
| 1913 | sub _sqrt | ||||
| 1914 | { | ||||
| 1915 | # square-root of $x in place | ||||
| 1916 | # Compute a guess of the result (by rule of thumb), then improve it via | ||||
| 1917 | # Newton's method. | ||||
| 1918 | my ($c,$x) = @_; | ||||
| 1919 | |||||
| 1920 | if (scalar @$x == 1) | ||||
| 1921 | { | ||||
| 1922 | # fits into one Perl scalar, so result can be computed directly | ||||
| 1923 | $x->[0] = int(sqrt($x->[0])); | ||||
| 1924 | return $x; | ||||
| 1925 | } | ||||
| 1926 | my $y = _copy($c,$x); | ||||
| 1927 | # hopefully _len/2 is < $BASE, the -1 is to always undershot the guess | ||||
| 1928 | # since our guess will "grow" | ||||
| 1929 | my $l = int((_len($c,$x)-1) / 2); | ||||
| 1930 | |||||
| 1931 | my $lastelem = $x->[-1]; # for guess | ||||
| 1932 | my $elems = scalar @$x - 1; | ||||
| 1933 | # not enough digits, but could have more? | ||||
| 1934 | if ((length($lastelem) <= 3) && ($elems > 1)) | ||||
| 1935 | { | ||||
| 1936 | # right-align with zero pad | ||||
| 1937 | my $len = length($lastelem) & 1; | ||||
| 1938 | print "$lastelem => " if DEBUG; | ||||
| 1939 | $lastelem .= substr($x->[-2] . '0' x $BASE_LEN,0,$BASE_LEN); | ||||
| 1940 | # former odd => make odd again, or former even to even again | ||||
| 1941 | $lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len; | ||||
| 1942 | print "$lastelem\n" if DEBUG; | ||||
| 1943 | } | ||||
| 1944 | |||||
| 1945 | # construct $x (instead of _lsft($c,$x,$l,10) | ||||
| 1946 | my $r = $l % $BASE_LEN; # 10000 00000 00000 00000 ($BASE_LEN=5) | ||||
| 1947 | $l = int($l / $BASE_LEN); | ||||
| 1948 | print "l = $l " if DEBUG; | ||||
| 1949 | |||||
| 1950 | splice @$x,$l; # keep ref($x), but modify it | ||||
| 1951 | |||||
| 1952 | # we make the first part of the guess not '1000...0' but int(sqrt($lastelem)) | ||||
| 1953 | # that gives us: | ||||
| 1954 | # 14400 00000 => sqrt(14400) => guess first digits to be 120 | ||||
| 1955 | # 144000 000000 => sqrt(144000) => guess 379 | ||||
| 1956 | |||||
| 1957 | print "$lastelem (elems $elems) => " if DEBUG; | ||||
| 1958 | $lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even? | ||||
| 1959 | my $g = sqrt($lastelem); $g =~ s/\.//; # 2.345 => 2345 | ||||
| 1960 | $r -= 1 if $elems & 1 == 0; # 70 => 7 | ||||
| 1961 | |||||
| 1962 | # padd with zeros if result is too short | ||||
| 1963 | $x->[$l--] = int(substr($g . '0' x $r,0,$r+1)); | ||||
| 1964 | print "now ",$x->[-1] if DEBUG; | ||||
| 1965 | print " would have been ", int('1' . '0' x $r),"\n" if DEBUG; | ||||
| 1966 | |||||
| 1967 | # If @$x > 1, we could compute the second elem of the guess, too, to create | ||||
| 1968 | # an even better guess. Not implemented yet. Does it improve performance? | ||||
| 1969 | $x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero | ||||
| 1970 | |||||
| 1971 | print "start x= ",_str($c,$x),"\n" if DEBUG; | ||||
| 1972 | my $two = _two(); | ||||
| 1973 | my $last = _zero(); | ||||
| 1974 | my $lastlast = _zero(); | ||||
| 1975 | $steps = 0 if DEBUG; | ||||
| 1976 | while (_acmp($c,$last,$x) != 0 && _acmp($c,$lastlast,$x) != 0) | ||||
| 1977 | { | ||||
| 1978 | $steps++ if DEBUG; | ||||
| 1979 | $lastlast = _copy($c,$last); | ||||
| 1980 | $last = _copy($c,$x); | ||||
| 1981 | _add($c,$x, _div($c,_copy($c,$y),$x)); | ||||
| 1982 | _div($c,$x, $two ); | ||||
| 1983 | print " x= ",_str($c,$x),"\n" if DEBUG; | ||||
| 1984 | } | ||||
| 1985 | print "\nsteps in sqrt: $steps, " if DEBUG; | ||||
| 1986 | _dec($c,$x) if _acmp($c,$y,_mul($c,_copy($c,$x),$x)) < 0; # overshot? | ||||
| 1987 | print " final ",$x->[-1],"\n" if DEBUG; | ||||
| 1988 | $x; | ||||
| 1989 | } | ||||
| 1990 | |||||
| 1991 | sub _root | ||||
| 1992 | { | ||||
| 1993 | # take n'th root of $x in place (n >= 3) | ||||
| 1994 | my ($c,$x,$n) = @_; | ||||
| 1995 | |||||
| 1996 | if (scalar @$x == 1) | ||||
| 1997 | { | ||||
| 1998 | if (scalar @$n > 1) | ||||
| 1999 | { | ||||
| 2000 | # result will always be smaller than 2 so trunc to 1 at once | ||||
| 2001 | $x->[0] = 1; | ||||
| 2002 | } | ||||
| 2003 | else | ||||
| 2004 | { | ||||
| 2005 | # fits into one Perl scalar, so result can be computed directly | ||||
| 2006 | # cannot use int() here, because it rounds wrongly (try | ||||
| 2007 | # (81 ** 3) ** (1/3) to see what I mean) | ||||
| 2008 | #$x->[0] = int( $x->[0] ** (1 / $n->[0]) ); | ||||
| 2009 | # round to 8 digits, then truncate result to integer | ||||
| 2010 | $x->[0] = int ( sprintf ("%.8f", $x->[0] ** (1 / $n->[0]) ) ); | ||||
| 2011 | } | ||||
| 2012 | return $x; | ||||
| 2013 | } | ||||
| 2014 | |||||
| 2015 | # we know now that X is more than one element long | ||||
| 2016 | |||||
| 2017 | # if $n is a power of two, we can repeatedly take sqrt($X) and find the | ||||
| 2018 | # proper result, because sqrt(sqrt($x)) == root($x,4) | ||||
| 2019 | my $b = _as_bin($c,$n); | ||||
| 2020 | if ($b =~ /0b1(0+)$/) | ||||
| 2021 | { | ||||
| 2022 | my $count = CORE::length($1); # 0b100 => len('00') => 2 | ||||
| 2023 | my $cnt = $count; # counter for loop | ||||
| 2024 | unshift (@$x, 0); # add one element, together with one | ||||
| 2025 | # more below in the loop this makes 2 | ||||
| 2026 | while ($cnt-- > 0) | ||||
| 2027 | { | ||||
| 2028 | # 'inflate' $X by adding one element, basically computing | ||||
| 2029 | # $x * $BASE * $BASE. This gives us more $BASE_LEN digits for result | ||||
| 2030 | # since len(sqrt($X)) approx == len($x) / 2. | ||||
| 2031 | unshift (@$x, 0); | ||||
| 2032 | # calculate sqrt($x), $x is now one element to big, again. In the next | ||||
| 2033 | # round we make that two, again. | ||||
| 2034 | _sqrt($c,$x); | ||||
| 2035 | } | ||||
| 2036 | # $x is now one element to big, so truncate result by removing it | ||||
| 2037 | splice (@$x,0,1); | ||||
| 2038 | } | ||||
| 2039 | else | ||||
| 2040 | { | ||||
| 2041 | # trial computation by starting with 2,4,8,16 etc until we overstep | ||||
| 2042 | my $step; | ||||
| 2043 | my $trial = _two(); | ||||
| 2044 | |||||
| 2045 | # while still to do more than X steps | ||||
| 2046 | do | ||||
| 2047 | { | ||||
| 2048 | $step = _two(); | ||||
| 2049 | while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0) | ||||
| 2050 | { | ||||
| 2051 | _mul ($c, $step, [2]); | ||||
| 2052 | _add ($c, $trial, $step); | ||||
| 2053 | } | ||||
| 2054 | |||||
| 2055 | # hit exactly? | ||||
| 2056 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) == 0) | ||||
| 2057 | { | ||||
| 2058 | @$x = @$trial; # make copy while preserving ref to $x | ||||
| 2059 | return $x; | ||||
| 2060 | } | ||||
| 2061 | # overstepped, so go back on step | ||||
| 2062 | _sub($c, $trial, $step); | ||||
| 2063 | } while (scalar @$step > 1 || $step->[0] > 128); | ||||
| 2064 | |||||
| 2065 | # reset step to 2 | ||||
| 2066 | $step = _two(); | ||||
| 2067 | # add two, because $trial cannot be exactly the result (otherwise we would | ||||
| 2068 | # already have found it) | ||||
| 2069 | _add($c, $trial, $step); | ||||
| 2070 | |||||
| 2071 | # and now add more and more (2,4,6,8,10 etc) | ||||
| 2072 | while (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) < 0) | ||||
| 2073 | { | ||||
| 2074 | _add ($c, $trial, $step); | ||||
| 2075 | } | ||||
| 2076 | |||||
| 2077 | # hit not exactly? (overstepped) | ||||
| 2078 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0) | ||||
| 2079 | { | ||||
| 2080 | _dec($c,$trial); | ||||
| 2081 | } | ||||
| 2082 | |||||
| 2083 | # hit not exactly? (overstepped) | ||||
| 2084 | # 80 too small, 81 slightly too big, 82 too big | ||||
| 2085 | if (_acmp($c, _pow($c, _copy($c, $trial), $n), $x) > 0) | ||||
| 2086 | { | ||||
| 2087 | _dec ($c, $trial); | ||||
| 2088 | } | ||||
| 2089 | |||||
| 2090 | @$x = @$trial; # make copy while preserving ref to $x | ||||
| 2091 | return $x; | ||||
| 2092 | } | ||||
| 2093 | $x; | ||||
| 2094 | } | ||||
| 2095 | |||||
| 2096 | ############################################################################## | ||||
| 2097 | # binary stuff | ||||
| 2098 | |||||
| 2099 | sub _and | ||||
| 2100 | { | ||||
| 2101 | my ($c,$x,$y) = @_; | ||||
| 2102 | |||||
| 2103 | # the shortcut makes equal, large numbers _really_ fast, and makes only a | ||||
| 2104 | # very small performance drop for small numbers (e.g. something with less | ||||
| 2105 | # than 32 bit) Since we optimize for large numbers, this is enabled. | ||||
| 2106 | return $x if _acmp($c,$x,$y) == 0; # shortcut | ||||
| 2107 | |||||
| 2108 | my $m = _one(); my ($xr,$yr); | ||||
| 2109 | my $mask = $AND_MASK; | ||||
| 2110 | |||||
| 2111 | my $x1 = $x; | ||||
| 2112 | my $y1 = _copy($c,$y); # make copy | ||||
| 2113 | $x = _zero(); | ||||
| 2114 | my ($b,$xrr,$yrr); | ||||
| 2115 | 2 | 136µs | 2 | 12µs | # spent 10µs (8+2) within Math::BigInt::Calc::BEGIN@2115 which was called:
# once (8µs+2µs) by Math::BigInt::BEGIN@1 at line 2115 # spent 10µs making 1 call to Math::BigInt::Calc::BEGIN@2115
# spent 2µs making 1 call to integer::import |
| 2116 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
| 2117 | { | ||||
| 2118 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
| 2119 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
| 2120 | |||||
| 2121 | # make ints() from $xr, $yr | ||||
| 2122 | # this is when the AND_BITS are greater than $BASE and is slower for | ||||
| 2123 | # small (<256 bits) numbers, but faster for large numbers. Disabled | ||||
| 2124 | # due to KISS principle | ||||
| 2125 | |||||
| 2126 | # $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
| 2127 | # $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
| 2128 | # _add($c,$x, _mul($c, _new( $c, ($xrr & $yrr) ), $m) ); | ||||
| 2129 | |||||
| 2130 | # 0+ due to '&' doesn't work in strings | ||||
| 2131 | _add($c,$x, _mul($c, [ 0+$xr->[0] & 0+$yr->[0] ], $m) ); | ||||
| 2132 | _mul($c,$m,$mask); | ||||
| 2133 | } | ||||
| 2134 | $x; | ||||
| 2135 | } | ||||
| 2136 | |||||
| 2137 | sub _xor | ||||
| 2138 | { | ||||
| 2139 | my ($c,$x,$y) = @_; | ||||
| 2140 | |||||
| 2141 | return _zero() if _acmp($c,$x,$y) == 0; # shortcut (see -and) | ||||
| 2142 | |||||
| 2143 | my $m = _one(); my ($xr,$yr); | ||||
| 2144 | my $mask = $XOR_MASK; | ||||
| 2145 | |||||
| 2146 | my $x1 = $x; | ||||
| 2147 | my $y1 = _copy($c,$y); # make copy | ||||
| 2148 | $x = _zero(); | ||||
| 2149 | my ($b,$xrr,$yrr); | ||||
| 2150 | 2 | 145µs | 2 | 10µs | # spent 8µs (7+1) within Math::BigInt::Calc::BEGIN@2150 which was called:
# once (7µs+1µs) by Math::BigInt::BEGIN@1 at line 2150 # spent 8µs making 1 call to Math::BigInt::Calc::BEGIN@2150
# spent 1µs making 1 call to integer::import |
| 2151 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
| 2152 | { | ||||
| 2153 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
| 2154 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
| 2155 | # make ints() from $xr, $yr (see _and()) | ||||
| 2156 | #$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
| 2157 | #$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
| 2158 | #_add($c,$x, _mul($c, _new( $c, ($xrr ^ $yrr) ), $m) ); | ||||
| 2159 | |||||
| 2160 | # 0+ due to '^' doesn't work in strings | ||||
| 2161 | _add($c,$x, _mul($c, [ 0+$xr->[0] ^ 0+$yr->[0] ], $m) ); | ||||
| 2162 | _mul($c,$m,$mask); | ||||
| 2163 | } | ||||
| 2164 | # the loop stops when the shorter of the two numbers is exhausted | ||||
| 2165 | # the remainder of the longer one will survive bit-by-bit, so we simple | ||||
| 2166 | # multiply-add it in | ||||
| 2167 | _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1); | ||||
| 2168 | _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1); | ||||
| 2169 | |||||
| 2170 | $x; | ||||
| 2171 | } | ||||
| 2172 | |||||
| 2173 | sub _or | ||||
| 2174 | { | ||||
| 2175 | my ($c,$x,$y) = @_; | ||||
| 2176 | |||||
| 2177 | return $x if _acmp($c,$x,$y) == 0; # shortcut (see _and) | ||||
| 2178 | |||||
| 2179 | my $m = _one(); my ($xr,$yr); | ||||
| 2180 | my $mask = $OR_MASK; | ||||
| 2181 | |||||
| 2182 | my $x1 = $x; | ||||
| 2183 | my $y1 = _copy($c,$y); # make copy | ||||
| 2184 | $x = _zero(); | ||||
| 2185 | my ($b,$xrr,$yrr); | ||||
| 2186 | 2 | 1.40ms | 2 | 13µs | # spent 11µs (10+1) within Math::BigInt::Calc::BEGIN@2186 which was called:
# once (10µs+1µs) by Math::BigInt::BEGIN@1 at line 2186 # spent 11µs making 1 call to Math::BigInt::Calc::BEGIN@2186
# spent 2µs making 1 call to integer::import |
| 2187 | while (!_is_zero($c,$x1) && !_is_zero($c,$y1)) | ||||
| 2188 | { | ||||
| 2189 | ($x1, $xr) = _div($c,$x1,$mask); | ||||
| 2190 | ($y1, $yr) = _div($c,$y1,$mask); | ||||
| 2191 | # make ints() from $xr, $yr (see _and()) | ||||
| 2192 | # $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | ||||
| 2193 | # $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | ||||
| 2194 | # _add($c,$x, _mul($c, _new( $c, ($xrr | $yrr) ), $m) ); | ||||
| 2195 | |||||
| 2196 | # 0+ due to '|' doesn't work in strings | ||||
| 2197 | _add($c,$x, _mul($c, [ 0+$xr->[0] | 0+$yr->[0] ], $m) ); | ||||
| 2198 | _mul($c,$m,$mask); | ||||
| 2199 | } | ||||
| 2200 | # the loop stops when the shorter of the two numbers is exhausted | ||||
| 2201 | # the remainder of the longer one will survive bit-by-bit, so we simple | ||||
| 2202 | # multiply-add it in | ||||
| 2203 | _add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1); | ||||
| 2204 | _add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1); | ||||
| 2205 | |||||
| 2206 | $x; | ||||
| 2207 | } | ||||
| 2208 | |||||
| 2209 | sub _as_hex | ||||
| 2210 | { | ||||
| 2211 | # convert a decimal number to hex (ref to array, return ref to string) | ||||
| 2212 | my ($c,$x) = @_; | ||||
| 2213 | |||||
| 2214 | # fits into one element (handle also 0x0 case) | ||||
| 2215 | return sprintf("0x%x",$x->[0]) if @$x == 1; | ||||
| 2216 | |||||
| 2217 | my $x1 = _copy($c,$x); | ||||
| 2218 | |||||
| 2219 | my $es = ''; | ||||
| 2220 | my ($xr, $h, $x10000); | ||||
| 2221 | if ($] >= 5.006) | ||||
| 2222 | { | ||||
| 2223 | $x10000 = [ 0x10000 ]; $h = 'h4'; | ||||
| 2224 | } | ||||
| 2225 | else | ||||
| 2226 | { | ||||
| 2227 | $x10000 = [ 0x1000 ]; $h = 'h3'; | ||||
| 2228 | } | ||||
| 2229 | while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() | ||||
| 2230 | { | ||||
| 2231 | ($x1, $xr) = _div($c,$x1,$x10000); | ||||
| 2232 | $es .= unpack($h,pack('V',$xr->[0])); | ||||
| 2233 | } | ||||
| 2234 | $es = reverse $es; | ||||
| 2235 | $es =~ s/^[0]+//; # strip leading zeros | ||||
| 2236 | '0x' . $es; # return result prepended with 0x | ||||
| 2237 | } | ||||
| 2238 | |||||
| 2239 | sub _as_bin | ||||
| 2240 | { | ||||
| 2241 | # convert a decimal number to bin (ref to array, return ref to string) | ||||
| 2242 | my ($c,$x) = @_; | ||||
| 2243 | |||||
| 2244 | # fits into one element (and Perl recent enough), handle also 0b0 case | ||||
| 2245 | # handle zero case for older Perls | ||||
| 2246 | if ($] <= 5.005 && @$x == 1 && $x->[0] == 0) | ||||
| 2247 | { | ||||
| 2248 | my $t = '0b0'; return $t; | ||||
| 2249 | } | ||||
| 2250 | if (@$x == 1 && $] >= 5.006) | ||||
| 2251 | { | ||||
| 2252 | my $t = sprintf("0b%b",$x->[0]); | ||||
| 2253 | return $t; | ||||
| 2254 | } | ||||
| 2255 | my $x1 = _copy($c,$x); | ||||
| 2256 | |||||
| 2257 | my $es = ''; | ||||
| 2258 | my ($xr, $b, $x10000); | ||||
| 2259 | if ($] >= 5.006) | ||||
| 2260 | { | ||||
| 2261 | $x10000 = [ 0x10000 ]; $b = 'b16'; | ||||
| 2262 | } | ||||
| 2263 | else | ||||
| 2264 | { | ||||
| 2265 | $x10000 = [ 0x1000 ]; $b = 'b12'; | ||||
| 2266 | } | ||||
| 2267 | while (!(@$x1 == 1 && $x1->[0] == 0)) # _is_zero() | ||||
| 2268 | { | ||||
| 2269 | ($x1, $xr) = _div($c,$x1,$x10000); | ||||
| 2270 | $es .= unpack($b,pack('v',$xr->[0])); | ||||
| 2271 | } | ||||
| 2272 | $es = reverse $es; | ||||
| 2273 | $es =~ s/^[0]+//; # strip leading zeros | ||||
| 2274 | '0b' . $es; # return result prepended with 0b | ||||
| 2275 | } | ||||
| 2276 | |||||
| 2277 | sub _as_oct | ||||
| 2278 | { | ||||
| 2279 | # convert a decimal number to octal (ref to array, return ref to string) | ||||
| 2280 | my ($c,$x) = @_; | ||||
| 2281 | |||||
| 2282 | # fits into one element (handle also 0 case) | ||||
| 2283 | return sprintf("0%o",$x->[0]) if @$x == 1; | ||||
| 2284 | |||||
| 2285 | my $x1 = _copy($c,$x); | ||||
| 2286 | |||||
| 2287 | my $es = ''; | ||||
| 2288 | my $xr; | ||||
| 2289 | my $x1000 = [ 0100000 ]; | ||||
| 2290 | while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() | ||||
| 2291 | { | ||||
| 2292 | ($x1, $xr) = _div($c,$x1,$x1000); | ||||
| 2293 | $es .= reverse sprintf("%05o", $xr->[0]); | ||||
| 2294 | } | ||||
| 2295 | $es = reverse $es; | ||||
| 2296 | $es =~ s/^[0]+//; # strip leading zeros | ||||
| 2297 | '0' . $es; # return result prepended with 0 | ||||
| 2298 | } | ||||
| 2299 | |||||
| 2300 | sub _from_oct | ||||
| 2301 | { | ||||
| 2302 | # convert a octal number to decimal (string, return ref to array) | ||||
| 2303 | my ($c,$os) = @_; | ||||
| 2304 | |||||
| 2305 | # for older Perls, play safe | ||||
| 2306 | my $m = [ 0100000 ]; | ||||
| 2307 | my $d = 5; # 5 digits at a time | ||||
| 2308 | |||||
| 2309 | my $mul = _one(); | ||||
| 2310 | my $x = _zero(); | ||||
| 2311 | |||||
| 2312 | my $len = int( (length($os)-1)/$d ); # $d digit parts, w/o the '0' | ||||
| 2313 | my $val; my $i = -$d; | ||||
| 2314 | while ($len >= 0) | ||||
| 2315 | { | ||||
| 2316 | $val = substr($os,$i,$d); # get oct digits | ||||
| 2317 | $val = CORE::oct($val); | ||||
| 2318 | $i -= $d; $len --; | ||||
| 2319 | my $adder = [ $val ]; | ||||
| 2320 | _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0; | ||||
| 2321 | _mul ($c, $mul, $m ) if $len >= 0; # skip last mul | ||||
| 2322 | } | ||||
| 2323 | $x; | ||||
| 2324 | } | ||||
| 2325 | |||||
| 2326 | sub _from_hex | ||||
| 2327 | { | ||||
| 2328 | # convert a hex number to decimal (string, return ref to array) | ||||
| 2329 | my ($c,$hs) = @_; | ||||
| 2330 | |||||
| 2331 | my $m = _new($c, 0x10000000); # 28 bit at a time (<32 bit!) | ||||
| 2332 | my $d = 7; # 7 digits at a time | ||||
| 2333 | if ($] <= 5.006) | ||||
| 2334 | { | ||||
| 2335 | # for older Perls, play safe | ||||
| 2336 | $m = [ 0x10000 ]; # 16 bit at a time (<32 bit!) | ||||
| 2337 | $d = 4; # 4 digits at a time | ||||
| 2338 | } | ||||
| 2339 | |||||
| 2340 | my $mul = _one(); | ||||
| 2341 | my $x = _zero(); | ||||
| 2342 | |||||
| 2343 | my $len = int( (length($hs)-2)/$d ); # $d digit parts, w/o the '0x' | ||||
| 2344 | my $val; my $i = -$d; | ||||
| 2345 | while ($len >= 0) | ||||
| 2346 | { | ||||
| 2347 | $val = substr($hs,$i,$d); # get hex digits | ||||
| 2348 | $val =~ s/^0x// if $len == 0; # for last part only because | ||||
| 2349 | $val = CORE::hex($val); # hex does not like wrong chars | ||||
| 2350 | $i -= $d; $len --; | ||||
| 2351 | my $adder = [ $val ]; | ||||
| 2352 | # if the resulting number was to big to fit into one element, create a | ||||
| 2353 | # two-element version (bug found by Mark Lakata - Thanx!) | ||||
| 2354 | if (CORE::length($val) > $BASE_LEN) | ||||
| 2355 | { | ||||
| 2356 | $adder = _new($c,$val); | ||||
| 2357 | } | ||||
| 2358 | _add ($c, $x, _mul ($c, $adder, $mul ) ) if $val != 0; | ||||
| 2359 | _mul ($c, $mul, $m ) if $len >= 0; # skip last mul | ||||
| 2360 | } | ||||
| 2361 | $x; | ||||
| 2362 | } | ||||
| 2363 | |||||
| 2364 | sub _from_bin | ||||
| 2365 | { | ||||
| 2366 | # convert a hex number to decimal (string, return ref to array) | ||||
| 2367 | my ($c,$bs) = @_; | ||||
| 2368 | |||||
| 2369 | # instead of converting X (8) bit at a time, it is faster to "convert" the | ||||
| 2370 | # number to hex, and then call _from_hex. | ||||
| 2371 | |||||
| 2372 | my $hs = $bs; | ||||
| 2373 | $hs =~ s/^[+-]?0b//; # remove sign and 0b | ||||
| 2374 | my $l = length($hs); # bits | ||||
| 2375 | $hs = '0' x (8-($l % 8)) . $hs if ($l % 8) != 0; # padd left side w/ 0 | ||||
| 2376 | my $h = '0x' . unpack('H*', pack ('B*', $hs)); # repack as hex | ||||
| 2377 | |||||
| 2378 | $c->_from_hex($h); | ||||
| 2379 | } | ||||
| 2380 | |||||
| 2381 | ############################################################################## | ||||
| 2382 | # special modulus functions | ||||
| 2383 | |||||
| 2384 | sub _modinv | ||||
| 2385 | { | ||||
| 2386 | # modular multiplicative inverse | ||||
| 2387 | my ($c,$x,$y) = @_; | ||||
| 2388 | |||||
| 2389 | # modulo zero | ||||
| 2390 | if (_is_zero($c, $y)) { | ||||
| 2391 | return (undef, undef); | ||||
| 2392 | } | ||||
| 2393 | |||||
| 2394 | # modulo one | ||||
| 2395 | if (_is_one($c, $y)) { | ||||
| 2396 | return (_zero($c), '+'); | ||||
| 2397 | } | ||||
| 2398 | |||||
| 2399 | my $u = _zero($c); | ||||
| 2400 | my $v = _one($c); | ||||
| 2401 | my $a = _copy($c,$y); | ||||
| 2402 | my $b = _copy($c,$x); | ||||
| 2403 | |||||
| 2404 | # Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the result | ||||
| 2405 | # ($u) at the same time. See comments in BigInt for why this works. | ||||
| 2406 | my $q; | ||||
| 2407 | my $sign = 1; | ||||
| 2408 | { | ||||
| 2409 | ($a, $q, $b) = ($b, _div($c, $a, $b)); # step 1 | ||||
| 2410 | last if _is_zero($c, $b); | ||||
| 2411 | |||||
| 2412 | my $t = _add($c, # step 2: | ||||
| 2413 | _mul($c, _copy($c, $v), $q) , # t = v * q | ||||
| 2414 | $u ); # + u | ||||
| 2415 | $u = $v; # u = v | ||||
| 2416 | $v = $t; # v = t | ||||
| 2417 | $sign = -$sign; | ||||
| 2418 | redo; | ||||
| 2419 | } | ||||
| 2420 | |||||
| 2421 | # if the gcd is not 1, then return NaN | ||||
| 2422 | return (undef, undef) unless _is_one($c, $a); | ||||
| 2423 | |||||
| 2424 | ($v, $sign == 1 ? '+' : '-'); | ||||
| 2425 | } | ||||
| 2426 | |||||
| 2427 | sub _modpow | ||||
| 2428 | { | ||||
| 2429 | # modulus of power ($x ** $y) % $z | ||||
| 2430 | my ($c,$num,$exp,$mod) = @_; | ||||
| 2431 | |||||
| 2432 | # a^b (mod 1) = 0 for all a and b | ||||
| 2433 | if (_is_one($c,$mod)) | ||||
| 2434 | { | ||||
| 2435 | @$num = 0; | ||||
| 2436 | return $num; | ||||
| 2437 | } | ||||
| 2438 | |||||
| 2439 | # 0^a (mod m) = 0 if m != 0, a != 0 | ||||
| 2440 | # 0^0 (mod m) = 1 if m != 0 | ||||
| 2441 | if (_is_zero($c, $num)) { | ||||
| 2442 | if (_is_zero($c, $exp)) { | ||||
| 2443 | @$num = 1; | ||||
| 2444 | } else { | ||||
| 2445 | @$num = 0; | ||||
| 2446 | } | ||||
| 2447 | return $num; | ||||
| 2448 | } | ||||
| 2449 | |||||
| 2450 | # $num = _mod($c,$num,$mod); # this does not make it faster | ||||
| 2451 | |||||
| 2452 | my $acc = _copy($c,$num); my $t = _one(); | ||||
| 2453 | |||||
| 2454 | my $expbin = _as_bin($c,$exp); $expbin =~ s/^0b//; | ||||
| 2455 | my $len = length($expbin); | ||||
| 2456 | while (--$len >= 0) | ||||
| 2457 | { | ||||
| 2458 | if ( substr($expbin,$len,1) eq '1') # is_odd | ||||
| 2459 | { | ||||
| 2460 | _mul($c,$t,$acc); | ||||
| 2461 | $t = _mod($c,$t,$mod); | ||||
| 2462 | } | ||||
| 2463 | _mul($c,$acc,$acc); | ||||
| 2464 | $acc = _mod($c,$acc,$mod); | ||||
| 2465 | } | ||||
| 2466 | @$num = @$t; | ||||
| 2467 | $num; | ||||
| 2468 | } | ||||
| 2469 | |||||
| 2470 | sub _gcd { | ||||
| 2471 | # Greatest common divisor. | ||||
| 2472 | |||||
| 2473 | my ($c, $x, $y) = @_; | ||||
| 2474 | |||||
| 2475 | # gcd(0,0) = 0 | ||||
| 2476 | # gcd(0,a) = a, if a != 0 | ||||
| 2477 | |||||
| 2478 | if (@$x == 1 && $x->[0] == 0) { | ||||
| 2479 | if (@$y == 1 && $y->[0] == 0) { | ||||
| 2480 | @$x = 0; | ||||
| 2481 | } else { | ||||
| 2482 | @$x = @$y; | ||||
| 2483 | } | ||||
| 2484 | return $x; | ||||
| 2485 | } | ||||
| 2486 | |||||
| 2487 | # Until $y is zero ... | ||||
| 2488 | |||||
| 2489 | until (@$y == 1 && $y->[0] == 0) { | ||||
| 2490 | |||||
| 2491 | # Compute remainder. | ||||
| 2492 | |||||
| 2493 | _mod($c, $x, $y); | ||||
| 2494 | |||||
| 2495 | # Swap $x and $y. | ||||
| 2496 | |||||
| 2497 | my $tmp = [ @$x ]; | ||||
| 2498 | @$x = @$y; | ||||
| 2499 | $y = $tmp; # no deref here; that would modify input $y | ||||
| 2500 | } | ||||
| 2501 | |||||
| 2502 | return $x; | ||||
| 2503 | } | ||||
| 2504 | |||||
| 2505 | ############################################################################## | ||||
| 2506 | ############################################################################## | ||||
| 2507 | |||||
| 2508 | 1 | 4µs | 1; | ||
| 2509 | __END__ | ||||
# spent 6µs within Math::BigInt::Calc::CORE:match which was called 12 times, avg 533ns/call:
# 7 times (4µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 123, avg 500ns/call
# 3 times (1µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 141, avg 367ns/call
# once (2µs+0s) by Math::BigInt::Calc::BEGIN@117 at line 130
# once (300ns+0s) by Math::BigInt::Calc::BEGIN@117 at line 131 | |||||
sub Math::BigInt::Calc::CORE:regcomp; # opcode | |||||
# spent 400ns within Math::BigInt::Calc::api_version which was called:
# once (400ns+0s) by Math::BigInt::import at line 2826 of Math/BigInt.pm |